

RTL8186/RTL8186P

WIRELESS LAN ACCESS POINT/ GATEWAY CONTROLLER

Preliminary DATASHEET

Rev. 0.9 4 Aug 2004

Track ID: XXXXXXXXXX

Realtek Semiconductor Corp.

No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan Tel: +886-3-5780211 Fax: +886-3-5776047 www.realtek.com.tw

COPYRIGHT

©2003 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind, neither expressed nor implied, including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

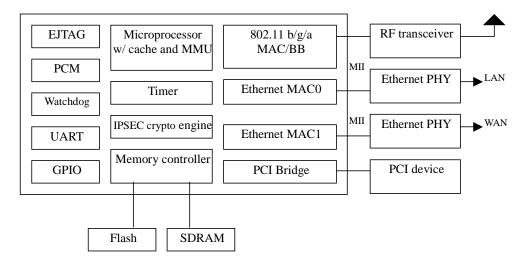
This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide. In that event, please contact your Realtek representative for additional information that may help in the development process.

REVISION HISTORY

Revision	Release Date	Summary
0.9	2004/8/4	First preliminary release.

Table of Contents


1. OVERVIEW	4
2. PIN ASSIGNMENTS	6
3. PIN DESCRIPTION	8
4. ADDRESS MAPPING	16
5. REGISTER MAPPING	18
6. SYSTEM CONFIGURATION	23
REGISTER SUMMARY	25
7. INTERRUPT CONTROLLER	27
REGISTER SUMMARY	27
8. MEMORY CONTROLLER	29
REGISTER SUMMARYTIMING DIAGRAM	
9. ETHERNET NETWORK INTERFACE CONTROLLER	35
DESCRIPTOR DATA STRUCTURE REGISTER SUMMARY	
10. UART CONTROLLER	55
REGISTER SUMMARY	55
11. TIMER & WATCHDOG	60
REGISTER SUMMARY	60
12. GPIO CONTROL	64
REGISTER SUMMARY	65
13. IPSEC CRYPTO ENGINE	69
DESCRIPTOR DATA STRUCTURES USED IN CRYPTO ENGINE	
14. MIC CALCULATOR	78
REGISTER SUMMARY	78
15. PCM CONTROLLER	80
REGISTER SUMMARY	80
16. 802.11A/B/G WLAN CONTROLLER	88
17. CHARACTERISTICS	110
18. DESIGN AND LAYOUT GUIDE	110
10 MECHANICAL DIMENSIONS	111

w1.0verview

The RTL8186 is a highly integrated system-on-a-chip (SoC), embedded with a high-performance 32-bit RISC processor, Ethernet, and WLAN controller. It is a cost-effective and high-performance solution for wireless LAN Access Point, wireless SOHO router, wireless Internet gateway systems, etc.

System block diagram:

The embedded processor is a Lexra LX5280 32-bit RISC CPU, with separate 8K instruction and 8K data caches. A Memory Management Unit (MMU) allows the memory to be segmented and protected. Such protection is a requirement of modern operating systems (e.g., Windows NT, 2000, XP, Linux).

The processor pipeline is a dual-issue 6-stage architecture. The dual-issue CPU fetches two instructions per cycle, allowing two instructions to be executed concurrently in two pipes for an up to 30% improvement over uni-scalar architecture.

It includes two Fast Ethernet MACs, one possibly used for the LAN interface and the other connected to a WAN port. An IEEE 802.11a/b/g WLAN MAC+Baseband processor is embedded. By interfacing with an external Realtek RF module, it could provide the total solution for 2.4GHz or 5GHz WLAN system.

To support the emergence of VPN applications and the latest test criteria of ICSA, RTL8186 incorporates a full function SH1/MD5/DES/3DES/AES-128 crypto engine. The crypto engine offloads the packet authentication/encryption/decryption job with just a single pass of DMA, and thus it could achieve high performance when IPSEC is deployed in system.

RTL8186 provides a glueless interface for external SDRAM and flash memory devices. It allows customers to use from 1M to 64M bytes SDRAM/flash memory with 16-bit or 32-bit variable length in great flexibility. RTL8186 can also support NOR and NAND type flash, and booting from NAND type flash could be fulfilled without extra cost.

Additionally, RTL8186 provides UART, PCI and PCM interfaces as well as more than 60 GPIO (Programmable I/O) pins. With the PCM interface, the wireless VoIP applications are made possible.

Realtek will provide turn-key solution in both hardware and software. Beside the evaluation board, we will provide hardware reference design kit, and software development kit for customization and adding new features.

Features

Core Processor

- n LX5280 32-bit RISC architecture compatible to MIPS R3000 ISA-1
- **n** Superscalar architecture, containing 2 execution pipelines with better performance
- n Embedded with 8K I-Cache, 8K D-Cache, 4K I-RAM and 4K D-RAM

wwn Dat 16-entry MMU supported

n Up to 200MHZ operating frequency

WLAN Controller

- n Integrated IEEE 802.11a/b/g complied MAC and DSSS Baseband processor
- **n** Data rate of 54M, 48M, 36M, 24M, 18M, 12M, 9M, 6M, 11M, 5.5M, 2M and 1M
- **n** Support antenna diversity and AGC
- n Support 802.11h DFS and TPC
- n Embedded with encryption/decryption engine for 64 bits/128 bits WEP, TKIP/MIC and AES
- n RF interface to Realtek 2.4G and 5G RF module

Fast Ethernet Controller

- n Fully compliant with IEEE 802.3/802.3u
- n Supports MII interface with full and half duplex capability
- n Supports descriptor-based buffer management with scatter-gather capability
- n Supports IP, TCP, and UDP checksum offload
- n Supports IEEE 802.1Q VLAN tagging and 802.1P priority queue
- n Supports full duplex flow control (IEEE 802.3X)

UART

- n 2 UART interfaces
- n 16550 compatible
- **n** 16 bytes FIFO size
- n Auto CTS/RTS flow control

Memory Controller

- n Supports external 16/32-bit SDRAM with 2 banks access, up to 32M bytes for each bank
- n Supports two external 16-bit NOR-type Flash memory, up to 8M bytes for each bank
- **n** Supports two external 8-bit NAND-type Flash memory, up to 32M bytes for each bank
- n Support boot from NAND type to reduce total bone cost

IPSEC Crypto Engine

- n Supports DES, 3DES and AES-128 encryption/decryption algorithm for ESP encryption with throughput up to 120Mbps
- **n** Supports HMAC-MD5 and HMAC-SHA-1 authentication algorithms
- **n** Supports CBC or EBC mode with DES/3DES/AES algorithm
- **n** A 32-bit PRNG (pseudo random number generator)
- **n** Single pass for both authentication and encryption/decryption

PCI Bridge

- n Complies with PCI 2.2.
- n Supports four external PCI devices.
- n Supports PCI master/slave mode with shared IRQ
- n 3.3 and 5V I/O tolerance
- n One of the PCI device supports memory mapping space up to 16M bytes, others up 1M bytes

GPIO

- n 11 dedicate programmable I/O ports and 58 shared GPIO ports
- **n** Individually configurable to input, output and edge transition

Watchdog/Timer/Counter

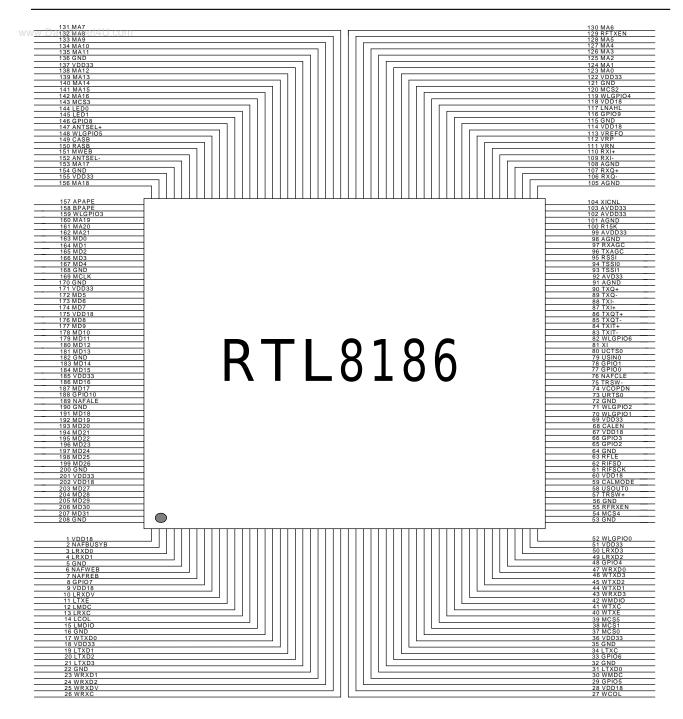
- **n** Hardware watchdog timer, used to reset the processor if the system hangs.
- **n** 4 sets of general timers/counter

EJTAG

n Use standard IEEE 1149.1 JTAG interface for software debugging

PCM

- **n** Supports 4 audio channels
- **n** Supports bus master mode
- n Supports G..711 u-law and a-law


Package

- n RTL8186 208-Pin QFP (Without PCI Interface).
- n RTL8186P 292-Pin TFBGA (With PCI Interface).

2. Pin Assignments

RTL8186 208-Pin QFP Pin Assignments:

RTL8186P 292-Pin TFBGA Pin Assignments:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Α	ANTSE	WEGG	(SCL)	G(P10))5	(AA1)	MA13	MA19	(8AM)	(A A M)	(AM)	(M A 3)	(IAM)	6AR	PCTCY	WLGR	LNAH	L PIO	CNTB	RIGEFO	75510	, A
В		0500)	(PIO)8	(ncs)	MA19	(1AM)	(1AN)	(PAM)	(AM)	(AM)	(FAM)	(0AM)	(ncs)		GNTB	_		_	_	_	
С	BPAPE	$\stackrel{\sim}{\sim}$	MWER	RASB	\simeq	\smile	\sim	INTB)	$\overline{}$	RETX		\sim	\sim	\sim	VRN	\sim	RXQ.	$\overline{}$	AVDD	\sim	
D	81AN	\bigcirc	\sim	$\overline{}$	ANTSE		(151N)	_	RTXD)		_	3(003) ²	\sim	B (X X)	\sim	\sim	\sim		-	WLGR	
Е		PCTRS	(AD2)	(AD23)	متا		O					•	W			\sim	$\overline{}$	AVOD		USIN	
F	(MDO)	_	WEGR!	\bigcirc													AVOD 3		_)+ GP10	
G	(MDZ)	(MD1)	_	REQB?													V(DD3)	(XQ)	TX1-	(P10)	
Н	MCTX	EDM)	\sim	(AD28)				(ND)	(GND)	GND	GND	(GND)	GND)			VDD3	(va)	\simeq	\simeq	, Н
J	(MD5)	MD4)	V(DD3)8	VDD3 ³²	,			GND	(ND)	(ND)	(GND)	(ND)	(ND))			(ADI)	(TIX)	TUCTS	P (ADO)) J
K	(MDG)	(MD)	VDDJ8	(00)	3			(GND)	(GND)	GND	GND	(ND)	(ND))			NAFEL	GNTB	WLGF	\ (AD2)	K
L	(MD8)	MD19	VDD]8	(00)	3			(GND)	(ND)	GND	(GND)	(GND)	(ND))						ALE	μ L
М	(D1)	(ND1)	WD13	NAFAI	-			(GND)	(ND)	GND	GND	(ND)	(ND))			TRSW	r (D19)	WEGR 01	CBEB	_} M
N	MD1)	MD1	$\overline{}$	(MD9)				(GND)	(GND)	GND	GND	(GND)	(GND))			VDD1	R/001			
Р	(ND1)	WD18	(ND2)	MD19													RIFSG	(D31)	G6103	(BEB	P P
R	(ND2)	(ND2)	(ND2)	TRDYE	3												TRSW	RFLB	(BEB	I RIFS) R
Т	MDZA	(ND2)	MD26	MD29												,	WKGRI	RFRXE	n EOD	CATM	Т
U	(P10)	0 (ND2)	MD28	NAFBU	LRXD	LEXDI	COD	(D1)	(8DA)	(AD2)	V(DD3)	(DD3)2	\$ (DD3)	\sim	~	(D14)	LRXD	3 (020)	MCS)	(D21)	U
V	TOPE	MD30		NAFRE	TXB	(AD3)	REQBY	(D10)	(AD4)	\sim	VDD1	\sim	MCS)	REQB	WTXQ	WRXB	D24	(P10)	REQE	PRXD	² V
W	LRXDO	NAFW	(PIO)		LW DY	(AD6)	LB	WRXD	WRX	M(CO)	MMD	(P10)	MCS	XTW G	F (D13	WRXI	(AD1)	(P10)	A D22	W(1X)	B W
Υ	LRXD	MD	G(01)	WEXD	L(XD)	L(TXD)	(FDA)	WRXB	G[01)	3V(RX)	(P10)	(ADS)	LEXD	D18	TXC	MCS	(D13	WMD	AD16	(012	Y
	 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	_ _

3. Pin Description

Memory Interface

Symbol	Type	208 QFP	256 BGA	Description
		Pin No	Pin No	
Memory Interface				
MDPIN[0]	I/O	163	F1	Data for SDRAM, Nor-type and NAND-type Flash.
MDPIN[1]		164	G2	
MDPIN[2]		165	G1	
MDPIN[3]		166	H2	

MDDDM(4)	I	1.67	1 12	
MDPIN[4]et4U.com		167 172	J2 J1	
MDPIN[5] MDPIN[6]		172	K1	
MDPIN[0] MDPIN[7]		173	K1 K2	
MDPIN[7] MDPIN[8]		174	L1	
MDPIN[9]		170	N4	
MDPIN[10]		177	L2	
MDPIN[10]		178	M1	
MDPIN[11]		180	M3	
MDPIN[13]		181	M2	
MDPIN[14]		183	N12 N1	
MDPIN[15]		184	N3	
MDPIN[16]		186	N2	
MDPIN[17]		187	P1	
MDPIN[18]		191	P2	
MDPIN[19]		192	P4	
MDPIN[20]		193	R1	
MDPIN[21]		194	R2	
MDPIN[22]		195	P3	
MDPIN[23]		196	R3	
MDPIN[24]		197	T1	
MDPIN[25]		198	T2	
MDPIN[26]		199	Т3	
MDPIN[27]		203	U2	
MDPIN[28]		204	U3	
MDPIN[29]		205	T4	
MDPIN[30]		206	V2	
MDPIN[31]		207	V3	
MAPIN[0]	O	123	B12	Address for SDRAM, Nor-type and NAND-type Flash.
MAPIN[1]		124	A12	MAPIN[18-15] mapping to DQM[3-0] for SDRAM
MAPIN[2]		125	B11	
MAPIN[3]		126	A11	
MAPIN[4]		127	B10	
MAPIN[5]		128	A10	
MAPIN[6]		130	A9	
MAPIN[7]		131	B9	
MAPIN[8]		132	A8	
MAPIN[9]		133	B8	
MAPIN[10]		134	A7	
MAPIN[11]		135	B7	
MAPIN[12]		138	A6	
MAPIN[13] MAPIN[14]		139	C7	
MAPIN[14] MAPIN[15]		140 141	A5 B6	
MAPIN[15] MAPIN[16]		141	B6 B5	
MAPIN[10] MAPIN[17]		153	D4	
MAPIN[17]		156	D4 D1	
MAPIN[19]		160	F2	
MAPIN[20]		161	E1	
MAPIN[21]		162	G3	
SDCLKPIN	О	169	H1	SDRAM clock
MCSPIN[0]	0	37	W13	SDRAM chip select
MCSPIN[1]		38	V13	
MCSPIN[2]	О	120	B13	Nor-type Flash chip select
MCSPIN[3]	_	143	B4	A. A
MCSPIN[4]	0	54	U19	NAND-type Flash chip select
MCSPIN[5]		39	Y16	
RASBPIN	О	150	C4	Raw address strobe for SDRAM, this pin is also the output enable pin for
,		-20]	Nor-type Flash
L			l .	→ 1 ***

CACDDIN		1.40	C.F.	CDDAM - dam - ddam - dada
CASBPIN et 4U.com	0	149	C5	SDRAM column address strobe
MWEBPIN	0	151	C3	Write enable for SDRAM and Flash
NAFBUSYBPIN	I	2	U4	NAND-type flash ready/busy status indication.
NAFWEBPIN	0	6	W2	NAND-type flash Write Enable.
NAFREBPIN	O	7	V4	NAND-type flash Read Enable.
NAFCLEPIN	О	76	K17	NAND-type flash Command Latch Enable.
NAFALEPIN	Ο	189	M4	NAND-type flash Address Latch Enable.
UART0 Interface			ı	
UCTS0PIN	I	80	J19	Uart0 Clear-to-Send signal. This pin mux-ed function with I2C SDAPIN at 208 QFP package.
URTS0PIN	О	73	L17	Uart0 Request-to-Send signal. This pin mux-ed function with I2C SCLPIN at 208 QFP package.
USIN0PIN	I	79	E20	Uart0 In data signal.
USOUT0PIN	0	58	T19	Uart0 Out data signal.
UART1 Interface	_			0 11.10 0 11.1 11.11.1 11.1
USIN1PIN	I	NA	D7	Uart1 In data signal.
USOUT1PIN	0	NA	B2	Uart1 Out data signal.
I2C Interface	U	INA	D2	Carri Out data signal.
	I/O	NT A	D0	TOC data signal
SDAPIN	I/O	NA	D8	I2C data signal.
SCLPIN	О	NA	A3	I2C clock signal.
PCM Interface			ı	
PCKPIN	I/O	NA	B14	PCM clock signal.
PFSPIN	О	NA	C11	PCM FS signal.
PTXDPIN	0	NA	D9	PCM TX data signal.
PRXDPIN	О	NA	C9	PCM RX data signal.
WLAN Traffic LED) Cont	rol	I.	
WLLED0PIN[0]	0	144	C2	WLAN Tx/Rx traffic indicator.
WLLED0PIN[1]	O	145	B1	WLAN Tx/Rx traffic indicator.
RF Interface for Re				WEAT VIA TATE INGICATOR
VREFO	X	113	A19	Not used in 8225 RF chipset.
VRP	X	112	B17	Not used in 8225 RF chipset.
VRN	X	111	C15	Not used in 8225 RF chipset.
RXIP	I	110	D14	Receive (Rx) In-phase Analog Data.
RXIN	I	109	C14	
RXQP	I	107	B18	Receive (Rx) Quadrature-phase Analog Data.
RXQN		106	C17	
R15K	I/O	100	D17	This pin must be pulled low by a 15K Ω resistor.
RXAGC	O	97	D18	Not used in 8225 RF chipset.
TXAGC	О	96	C18	Not used in 8225 RF chipset.
RSSI	I	95	D19	Analog Input to the Receive Power A/D Converter for Receive AGC Control.
TSSI0	I	94	A20	Input to the Transmit Power A/D Converter for 2.4GHz Transmit AGC Control.
TSSI1	I	93	B20	Not used in 8225 RF chipset.
TXQP	О	90	H18	Not used in 8225 RF chipset.
TXQN	Ö	89	G18	
TXIN	O	88	G19	Not used in 8225 RF chipset.
TXIP	Ö	87	H19	
XI	I	81	H20	40 MHz OSC Input.
XIPWRSEL	I	104	B19	Operating frequency voltage selection between 3.3v and 1.8v.
TXQTP	O	86	F19	Transmit (TX) Quadrature-phase Analog Data.
_		85		Transmit (174) Quadrature-phase Analog Data.
TXQTN	0		F18	Turney to (TW) In the see A real or Date
TXITP	0	84	J18	Transmit (TX) In-phase Analog Data.
TXITN	0	83	E19	
RIFSCKPIN	О	61	P17	Serial Clock Output. All operation mode switching and register setting is done by 4-wire serial interface.

RIFSDPINet4U.com	I/O	62	R20	Serial Data Input/Output.
RFLEPIN	0	63	R18	Serial Enable control.
CALENPIN	0	68	L20	Serial Read/Write control.
CALMODEPIN	I/O	59	T20	Not used in 8225 RF chipset.
VCOPDNPIN	0	74	L18	This pin is used to turn on/off RF transceiver.
TRSWPIN	0	57	R17	Transmit/Receive path select.
TRSWBPIN	Ö	75	M17	The TRSW select signal controls the direction of the Transmit/Receive
TKS W DI IIV		75	IVII /	switch.
RFTXENPIN	О	129	C10	Not used in 8225 RF chipset.
RFRXENPIN	O	55	T18	Not used in 8225 RF chipset.
LNAHLPIN	0	117	A16	Not used in 8225 RF chipset.
ANTSELPIN	0	147	A1	Antenna Select.
ANTSELBPIN	Ö	152	D5	The antenna detects signal change states as the receiver switches from
INTELLEGIAL		132	D3	antenna to antenna during the acquisition process in antenna diversity
				mode.
A_PAPEPIN	О	157	F4	2.4GHz Transmit Power Amplifier Power Enable.
B_PAPEPIN	0	158	C1	Not used in 8225 RF chipset.
WLGPIOPIN[0]	I/O	52	T17	General purpose input/output pin.
WLGPIOPIN[1]	I/O	70	M19	General purpose input/output pin.
WLGPIOPIN[2]	I/O	71	K19	General purpose input/output pin. General purpose input/output pin.
WLGPIOPIN[3]	I/O	159	F3	General purpose input/output pin.
WLGPIOPIN[4]	I/O	119	A15	General purpose input/output pin.
WLGPIOPIN[5]	I/O	148	A13	General purpose input/output pin. General purpose input/output pin.
WLGPIOPIN[6]	I/O	82	D20	General purpose input/output pin. General purpose input/output pin.
RF Interface for Re				General purpose input/output pin.
VREFO	X	113	A19	
	X			Not used in 8255 RF chipset.
VRP		112	B17	Not used in 8255 RF chipset.
VRN	X	111	C15	Not used in 8255 RF chipset.
RXIP	I	110	D14	Receive (Rx) In-phase Analog Data.
RXIN	I	109	C14	
RXQP	I	107 106	B18	Receive (Rx) Quadrature-phase Analog Data.
RXQN	T/O	100	C17	This air word he will allow here 15W O weights
R15K	I/O	97	D17	This pin must be pulled low by a 15K Ω resistor.
RXAGC	0		D18	Not used in 8255 RF chipset.
TXAGC	O	96	C18	Not used in 8255 RF chipset.
RSSI	I	95	D19	Analog Input to the Receive Power A/D Converter for Receive AGC Control.
TSSI0	I	94	A20	Input to the Transmit Power A/D Converter for 2.4GHz Transmit AGC
13310	1	94	A20	_
TSSI1	I	93	B20	Control. Input to the Transmit Power A/D Converter for 5GHz Transmit AGC
13311	1	93	B 20	Control.
TXQP	0	90	H18	Transmit (TX) Quadrature-phase Analog Data.
TXQN	0	90 89	G18	Transmit (1A) Quaurature-phase Analog Data.
TXIN	0	88	G19	Transmit (TX) In-phase Analog Data.
TXIP	O	87	H19	Transmit (174) in-phase Analog Data.
XI	I	81	H20	40 MHz OSC Input.
XIPWRSEL	I	104	B19	Operating frequency voltage selection between 3.3v and 1.8v.
TXQTP	O	86	F19	Not used in 8255 RF chipset.
TXQTN	0	85	F19 F18	not used in 6233 Ki empset.
TXITP	0	84	J18	Not used in 8255 RF chipset.
TXITN	0	84 83	E19	not used in 6233 Ki empset.
	0	61		Sorial Clock Output
RIFSCKPIN	U	01	P17	Serial Clock Output. All operation mode switching and register setting is done by 3-wire serial
				interface.
DIECUDIN	I/O	62	R20	Serial Data Input/Output.
RIFSDPIN RFLEPIN				Serial Enable control.
	0	63 68	R18 L20	Not used in 8255 RF chipset.
CALENPIN	О			

CALMODEPIN	I/O	59	T20	Not used in 8255 RF chipset.
VCOPDNPIN	0	74	L18	This pin is used to turn on/off RF transceiver.
TRSWPIN	О	57	R17	Transmit/Receive path select.
TRSWBPIN	О	75	M17	The TRSW select signal controls the direction of the Transmit/Receive switch.
RFTXENPIN	0	129	C10	Not used in 8255 RF chipset.
RFRXENPIN	О	55	T18	Not used in 8255 RF chipset.
LNAHLPIN	О	117	A16	Not used in 8255 RF chipset.
ANTSELPIN	О	147	A1	Antenna Select.
ANTSELBPIN	О	152	D5	The antenna detects signal change states as the receiver switches from antenna to antenna during the acquisition process in antenna diversity mode.
A_PAPEPIN	О	157	F4	2.4GHz Transmit Power Amplifier Power Enable.
B_PAPEPIN	О	158	C1	5GHz Transmit Power Amplifier Power Enable.
WLGPIOPIN[0]	I/O	52	T17	General purpose input/output pin.
WLGPIOPIN[1]	I/O	70	M19	General purpose input/output pin.
WLGPIOPIN[2]	I/O	71	K19	General purpose input/output pin.
WLGPIOPIN[3]	I/O	159	F3	General purpose input/output pin.
WLGPIOPIN[4]	I/O	119	A15	General purpose input/output pin.
WLGPIOPIN[5]	I/O	148	A2	General purpose input/output pin.
WLGPIOPIN[6]	I/O	82	D20	General purpose input/output pin.
LAN Interface			1	
LRXCPIN	I	13	W4	This is a continuous clock that is recovered from the incoming data. The RX clock is 25MHz in 100Mbps and 2.5Mhz in 10Mbs.
LRXDPIN[0]	I	3	W1	This is a group of 4 data signals aligned on nibble boundaries which are
LRXDPIN[1]		4	U5	driven synchronous to the RX clock by the external physical unit
LRXDPIN[2]		49	V20	
LRXDPIN[3]		50	U17	
LRXDVPIN	I	10	Y1	Data valid is asserted by an external PHY when receive data is present on the RXD[3:0] lines, and it is deasserted at the end of the packet. This signal is valid on the rising of the RXC.
LTXCPIN	I	34	Y15	TXC is a continuous clock that provides a timing reference for the transfer of TXD[3:0], TXE. In MII mode, it uses the 25 MHz or 2.5 MHz supplied by the external PMD device.
LTXEPIN	О	11	V5	Indicates the presence of valid nibble data on TXD[3:0].
LTXDPIN[0]	О	31	Y13	Four parallel transmit data lines which are driven synchronous to the TXC
LTXDPIN[1]		19	U6	for transmission by the external physical layer chip.
LTXDPIN[2]		20	Y5	
LTXDPIN[3]		21	Y6	
LCOLPIN	I	14	U7	This signal is asserted high synchronously by the external physical unit upon detection of a collision on the medium. It will remain asserted as long as the collision condition persists.
LMDIOPIN	I/O	15	W5	Management Data Input/Output: This pin provides the bi-directional signal used to transfer management information.
LMDCPIN	О	12	Y2	Management Data Clock: This pin provides a clock synchronous to MDIO, which may be asynchronous to the transmit TXC and receive RXC clocks.
WAN Interface				•
WRXCPIN	I	26	Y10	This is a continuous clock that is recovered from the incoming data. The RX clock is 25MHz in 100Mbps and 2.5Mhz in 10Mbs.
WRXDPIN[0]	I	47	V16	This is a group of 4 data signals aligned on nibble boundaries which are
WRXDPIN[1]		23	W8	driven synchronous to the RX clock by the external physical unit
WRXDPIN[2]		24	Y8	
WRXDPIN[3]		43	W16	
WRXDVPIN	I	25	W9	Data valid is asserted by an external PHY when receive data is present on the RXD[3:0] lines, and it is deasserted at the end of the packet. This signal is valid on the rising of the RXC.
WTXCPIN	I	41	U14	TXC is a continuous clock that provides a timing reference for the transfer of TXD[3:0], TXE. In MII mode, it uses the 25 MHz or 2.5 MHz supplied

ww.DataSheet4U.com				by the external PMD device.
WTXEPIN	О	40	W14	Indicates the presence of valid nibble data on TXD[3:0].
WTXDPIN[0]	О	17	Y4	Four parallel transmit data lines which are driven synchronous to the TXC
WTXDPIN[1]		44	U15	for transmission by the external physical layer chip.
WTXDPIN[2]		45	V15	
WTXDPIN[3]		46	W20	
WCOLPIN	I	27	W10	This signal is asserted high synchronously by the external physical unit
				upon detection of a collision on the medium. It will remain asserted as long
				as the collision condition persists.
WMDIOPIN	I/O	42	Y18	Management Data Input/Output: This pin provides the bi-directional signal
				used to transfer management information.
WMDCPIN	О	30	W11	Management Data Clock: This pin provides a clock synchronous to MDIO,
				which may be asynchronous to the transmit TXC and receive RXC clocks.
GPIO Group A				
GPAPIN[0]	I/O	77	G20	
GPAPIN[1]	I/O	78	F20	
GPAPIN[2]	I/O	65	N19	
GPAPIN[3]	I/O	66	P19	
GPAPIN[4]	I/O	48	V18	
GPAPIN[5]	I/O	29	Y11	
GPAPIN[6]	I/O	33	W12	This pin also be JTAG_TDI when JTAG function is enabled.
GPAPIN[7]	I/O	8	W3	This pin also be JTAG_TMS when JTAG function is enabled.
GPAPIN[8]	I/O	146	B3	This pin also be JTAG_TRSTN when JTAG function is enabled.
GPAPIN[9]	I/O	116	A17	This pin also be JTAG_TDO when JTAG function is enabled.
GPAPIN[10]	I	188	U1	Reserved for internal use
GPIO Group F	1	100	01	Reserved for internal use
GPFPIN[0]	I/O	NA	Y3	
	I/O	NA	C12	
GPFPIN[1]	I/O	NA NA	Y9	
GPFPIN[2]	I/O	NA NA	W18	
GPFPIN[3]				
GPFPIN[4]	I/O	NA	A4	
GPFPIN[5]	I/O	NA	C6	
PCI Interface	T/O	37.4	120	DOX 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PCIADPIN[0]	I/O	NA	J20	PCI address and data multiplexed pins. The address phase is the first clock
PCIADPIN[1]	I/O	NA	J17	cycle in which FRAMEB is asserted. During the address phase, AD31-0
PCIADPIN[2]	I/O	NA	U10	contains a physical address (32 bits). For I/O, this is a byte address, and for
PCIADPIN[3]	I/O	NA	V6	configuration and memory, it is a double-word address. Write data is stable and
PCIADPIN[4]	I/O	NA	V9	valid when IRDYB is asserted. Read data is stable and valid when TRDYB is
PCIADPIN[5]	I/O	NA	Y12	asserted. Data I is transferred during those clocks where both IRDYB and
PCIADPIN[6]	I/O	NA	W6	TRDYB are asserted.
PCIADPIN[7]	I/O	NA	Y7	
PCIADPIN[8]	I/O	NA	U9	
PCIADPIN[9]	I/O	NA	V10	
PCIADPIN[10]	I/O	NA	V8	
PCIADPIN[11]	I/O	NA	W17	
PCIADPIN[12]	I/O	NA	Y20	
PCIADPIN[13]	I/O	NA	Y17	
PCIADPIN[14]	I/O	NA	U16	
PCIADPIN[15]	I/O	NA	W15	
PCIADPIN[16]	I/O	NA	Y19	
PCIADPIN[17]	I/O	NA	U8	
PCIADPIN[18]	I/O	NA	Y14	
PCIADPIN[19]	I/O	NA	M18	
PCIADPIN[20]	I/O	NA	U18	
PCIADPIN[21]	I/O	NA	U20	
PCIADPIN[22]	I/O	NA	W19	
PCIADPIN[23]	I/O	NA	K20	
PCIADPIN[24]	I/O	NA	V17	

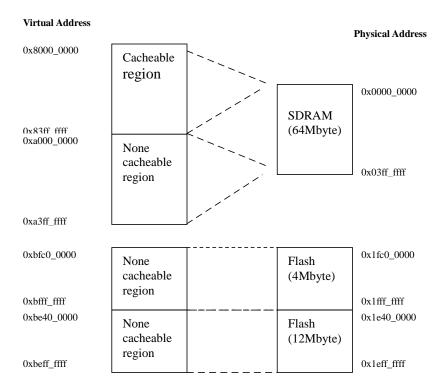
DCI A DDINI(25)	1/0	NT A	E4	T
PCIADPIN[25] com	I/O	NA	E4	
PCIADPIN[26]	I/O	NA	D6	
PCIADPIN[27]	I/O	NA	E3	
PCIADPIN[28]	I/O	NA	H4	
PCIADPIN[29]	I/O	NA	Н3	
PCIADPIN[30]	I/O	NA	N20	
PCIADPIN[31]	I/O	NA	P18	
CBEBPIN[0]	I/O	NA	P20	PCI bus command and byte enables multiplexed pins. During the address
CBEBPIN[1]	I/O	NA	R19	phase of a transaction, C/BE3-0 define the bus command. During the data
CBEBPIN[2]	I/O	NA	M20	phase, C/BE3-0 are used as Byte Enables. The Byte Enables are valid for
CBEBPIN[3]	I/O	NA	L19	the entire data phase and determine which byte lanes carry meaningful data. C/BE0 applies to byte 0, and C/BE3 applies to byte 3.
PCICLKPIN	О	NA	A14	PCI clock: This clock input provides timing for all PCI transactions and is input to the PCI device.
PCIRTSBPIN	О	NA	E2	Reset: Active low signal to reset the PCI device.
FRAMEBPIN	I/O	NA	D3	Cycle Frame: As a bus master, this pin indicates the beginning and duration of an access. FRAMEB is asserted low to indicate the start of a bus transaction. While FRAMEB is asserted, data transfer continues. When
				FRAMEB is deasserted, the transaction is in the final data phase. As a target, the device monitors this signal before decoding the address to check if the current transaction is addressed to it.
IRDYBPIN	I/O	NA	D2	Initiator Ready: This indicates the initiating agent's ability to complete the
IKD I DI IIV	1/0	11/1	D2	current data phase of the transaction.
				As a bus master, this signal will be asserted low when the RTL8186 is
				ready to complete the current data phase transaction. This signal is used in
				conjunction with the TRDYB signal. Data transaction takes place at the
				rising edge of CLK when both IRDYB and TRDYB are asserted low. As a
				target, this signal indicates that the master has put data on the bus.
TRDYBPIN	I/O	NA	R4	Target Ready: This indicates the target agent's ability to complete the
TRO TOTAL	1/ 0	1111	101	current phase of the transaction.
				As a bus master, this signal indicates that the target is ready for the data
				during write operations and with the data during read operations. As a
				target, this signal will be asserted low when the (slave) device is ready to
				complete the current data phase transaction. This signal is used in
				conjunction with the IRDYB signal. Data transaction takes place at the
				rising edge of CLK when both IRDYB and TRDYB are asserted low.
STOPBPIN	I/O	NA	V1	Stop: Indicates that the current target is requesting the master to stop the
				current transaction.
DEVSELBPIN	I/O	NA	W7	Device Select: As a bus master, the RTL8186 samples this signal to insure
				that a PCI target recognizes the destination address for the data transfer.
PARPIN	I/O	NA	A13	Parity: This signal indicates even parity across AD31-0 and C/BE3-0
				including the PAR pin. PAR is stable and valid one clock after each address
				phase. For data phase, PAR is stable and valid one clock after either
				IRDYB is asserted on a write transaction or TRDYB is asserted on a read
				transaction. Once PAR is valid, it remains valid until one clock after the
				completion of the current data phase. As a bus master, PAR is asserted
				during address and write data phases. As a target, PAR is asserted during
				read data phases.
REQB0PIN	I	NA	V19	Request: Request indicates to the arbiter that this agent desires use of the
				bus.
GNTB0PIN	О	NA	K18	Grant:Grant indicate to the agent that access to the bus has been granted.
REQB1PIN	I	NA	V14	Request: Request indicates to the arbiter that this agent desires use of the
				bus.
GNTB1PIN	О	NA	B15	Grant:Grant indicate to the agent that access to the bus has been granted.
REQB2PIN	I	NA	V7	Request: Request indicates to the arbiter that this agent desires use of the bus.
GNTB2PIN	О	NA	A18	Grant:Grant indicate to the agent that access to the bus has been granted.
REQB3PIN	I	NA	G4	Request: Request indicates to the arbiter that this agent desires use of the

w.DataSheet4U.com				bus.
GNTB3PIN	О	NA	B16	Grant:Grant indicate to the agent that access to the bus has been granted.
INTB0PIN	Ι	NA	C8	Interrupt A: Used to request an interrupt. It is asserted low when an interrupt condition occurs, as defined by the Interrupt Status, Interrupt Mask.
Power & GND				
DVDD33	-	18	D10	CPU power +3.3V (Digital),
		36	D11	
		51	D12	
		69	G17	
		122	H17	
		137	J3	
		155	J4	
		171	K4	
		185	U11	
		201	U12	
			U13	
DGND33	-	16	H10	CPU 3.3 GND (Digital)
		35	H11	
		53	H12	
		72	H13	
		121	H8	
		136	H9	
		154	J10	
		168	J11	
		182	J12	
		200	J13	
DVDD18	-	1	C13	CPU +1.8V (Digital)
		9	D13	
		28	K3	
		60	L3	
		67	L4	
		114	N17	
		118	N18	
		175	V11	
DCMD10		202	V12	ONU 1 0 C 1 (D) (1 1)
DGND18	-	5	J8	CPU 1.8Ground (Digital)
		22	J9	
		32	K10	
		56	K11	
		64	K12	
		115 170	K13 K8	
		170	K8 K9	
		208	L10	
		208	L10 L11	
			L11 L12	
			L12 L13	
			LI3 L8	
			L9	
			M10	
			M10 M11	
			M12	
			N10	
			N11	
			N12	
			N13	
			N8	
			N9	

www.DataSheet4U.com			M13	
			M8	
			M9	
VDDA	-	102	E17	Wirless LAN power 3.3V(Analog)
		103	E18	
			F17	
GNDA	-	101	C16	Wirless LAN Ground (Analog)
		105	D15	
			D16	
GNDSUB	-	108	-	Wirless LAN Ground (Analog), GA7 VSUB
VDDBG	-	99	-	Analog VDD for WLAN Baseband.
GNDBG	-	98	-	Analog GND for WLAN Baseband.
VDDPLL	-	92	C20	PLL power(Analog)
GNDPLL	-	91	C19	PLL Ground(Analog)

4. Address Mapping

The RTL8186 supports up to 4 gigabytes of logical address space, mapped to two kinds of memory device (SDRAM and ROM/FLASH). The memory address mapping is managed by MMU, which translates the virtual address to physical address. The memory is segmented into four regions by its access mode and caching capability as shown in following table.


Segment	Size	Caching	Virtual address range	Physical address range	Mode
KUSEG	2048M	cacheable	0x0000_0000-0x7fff_ffff	set in TLB	user/kernel
KSEG0	512M	cacheable	0x8000_0000-0x9fff_ffff	0x0000_0000-0x1fff_ffff	kernel
KSEG1	512M	uncachable	0xa000_0000-0xbfff_ffff	0x0000_0000-0x1fff_ffff	kernel
KSEG2	512M	cacheable	0xc000_0000-0xfeff_ffff	set in TLB	kernel
KSEG2	512M	cacheable	0xff00_0000-0xffff_ffff	0xff00_0000-0xffff_ffff	kernel

The RTL8186 has two memory mapping modes: direct memory mapping and TLB (Translation Look-aside Buffer) address mapping. When virtual address is located in the regions KSEG0, KSEG1 or higher half of KSEG2 segments, it physical address will be mapped directly from virtual address with an offset. If a virtual address is used in the region of KUSEG or lower half of KSEG2 segment, its physical address will be referred from TLB entry. RTL8186 contains 16 TLB entries, each of which maps to a page, with read/write access, cache-ability and process id.

In RTL8186, SDRAM is mapped from physical address $0x0000_0000$ to maximum $0x03ff_ffff$ (64M bytes). After reset, RTL8186 will start to fetch instructions from logical address $0xbfc0_0000$, the starting address of first flash memory. The flash memory is mapped from physical address $0x1fc0_0000$ to maximum $0x1fff_ffff$ (4M bytes). If flash size is greater than 4M, the physical address of flash memory more than 4M, will map from $0x1e40_0000$ to $0x1eff_ffff$.

Memory Map (without TLB):

The memory map of RTL8186 I/O devices and registers are located in KSEG1 segment (uncacheable region). The following table illustrates the address map: $\frac{1}{2}$

Virtual address range	Size (bytes)	Mapped device
0xBD01_0000 - 0xBD01_0FFF	4K	Special function registers (note)
0xBD01_1000 - 0xBD01_1FFF	4K	Memory controller registers
0xBD10_0000 - 0xBD17_FFFF	512K	IPSec Crypto Engine registers
0xBD18_0000 - 0xBD1F_FFFF	512K	TKIP MIC calculator registers
0xBD20_0000 - 0xBD27_FFFF	512K	Ethernet0
$0xBD28_0000 - 0xBD2F_FFFF$	512K	PCM
0xBD30_0000 - 0xBD3F_FFFF	1M	Ethernet1
$0xBD40_0000 - 0xBD4F_FFFF$	1M	WLAN controller
0xBD50_0000 - 0xBD5F_FFFF	1M	IO map address of PCI device
0xBD60_0000 - 0xBD60_FFFF	64K	Memory map address of PCI device
		0, 1
0xBD68_0000 - 0xBD68_FFFF	64K	Memory map address of PCI device
		2
0xB000_0000 - 0xBCFF_FFFF	208M	Memory map address of PCI device
		3
0xBD71_0000 - 0xBD71_FFFF	64K	Configuration space of PCI device0
0xBD72_0000 - 0xBD72_FFFF	64K	Configuration space of PCI device1
0xBD74_0000 - 0xBD74_FFFF	64K	Configuration space of PCI device2
0xBD78_0000 - 0xBD78_FFFF	64K	Configuration space of PCI device3

NOTE: The special function includes interrupt control, timer, watchdog, UART, and GPIO.

5. Register Mapping

The following table displays the address mapping of the all registers:

Virtual Address	Register Symbol	Register Name					
		terrupt Controller					
0xBD01_0000	GIMR	Global mask register					
0xBD01_0004	GISR	Global interrupt status register					
	Scratch Registers						
0xBD01_0040	SR0	Scratch register 0					
0xBD01_0044	SR1	Scratch register 1					
0xBD01_0048	SR2	Scratch register 2					
0xBD01_004C	SR3	Scratch register 3					
		Timer					
0xBD01_0050	TCCNT	Timer/Counter control register					
0xBD01_0054	TCIR	Timer/Counter interrupt register					
0xBD01_0058	CBDR	Clock division base register					
0xBD01_005C	WDTCNR	Watchdog timer control register					
0xBD01_0060	TC0DATA	Timer/Counter 0 data register					
0xBD01_0064	TC1DATA	Timer/Counter 1 data register					
0xBD01_0068	TC2DATA	Timer/Counter 2 data register					
0xBD01_006C	TC3DATA	Timer/Counter 3 data register					
0xBD01_0070	TC0CNT	Timer/Counter 0 count register					
0xBD01_0074	TC1CNT	Timer/Counter 1 count register					
0xBD01_0078	TC2CNT	Timer/Counter 2 count register					
0xBD01_007C	TC3CNT	Timer/Counter 3 count register					
		UART0					
0xBD01_00C3	UART0_RBR	UART0 receiver buffer register					
0xBD01_00C3	UART0_THR	UART0 transmitter holding register					
0xBD01_00C3	UART0_DLL	UART0 divisor latch LSB					
0xBD01_00C7	UART0_DLM	UART0 divisor latch MSB					
0xBD01_00C7	UART0_IER	UART0 interrupt enable register					
0xBD01_00CB	UART0_IIR	UART0 interrupt identification register					
0xBD01_00CB	UART0_FCR	UART0 FIFO control register					
0xBD01_00CF	UART0_LCR	UART0 line control register					
0xBD01_00D3	UART0_MCR	UART0 modem control register					
0xBD01_00D7	UART0_LSR	UART0 line status register					
0xBD01_00DB	UART0_MSR	UART0 modem status register					
0xBD01_00DF	UART0_SCR	UART0 scratch register					
		UART1					
0xBD01_00E3	UART1_RBR	UART1 receiver buffer register					
0xBD01_00E3	UART1_THR	UART1 transmitter holding register					
0xBD01_00E3	UART1_DLL	UART1 divisor latch LSB					
0xBD01_00E7	UART1_DLM	UART1 divisor latch MSB					
0xBD01_00E7	UART1_IER	UART1 interrupt enable register					
0xBD01_00EB	UART1_IIR	UART1 interrupt identification register					
0xBD01_00EB	UART1_FCR	UART1 FIFO control register					
0xBD01_00EF	UART1_LCR	UART1 line control register					
0xBD01_00F3	UART1_MCR	UART1 modem control register					
0xBD01_00F7	UART1_LSR	UART1 line status register					
0xBD01_00FB	UART1_MSR	UART1 modem status register					
0xBD01_00FF	UART1_SCR	UART1 scratch register					
System Configuration register							
0xBD01_0100	BDGCR	BDG0, BDG1 and PCI bridge configuration register					
0xBD01_0104	PLLMNR	DLL M ,N parameter register					
0xBD01_0108	SYSCLKR	System clock setting register					

0 BB01 0110	TELY ID						
0xBD01_0110_con		Master token setting register					
0xBD01_0114	BDGWTR	Bridge master weight setting register					
0xBD01_0118	PCIWTR	PCI master weight setting register					
0.7704.0450	Tanina ini	GPIO A/B					
0xBD01_0120	GPABDATA	Port A/B data register					
0xBD01_0124	GPABDIR	Port A/B direction register					
0xBD01_0128	GPABIMR	Port A/B interrupt mask register					
0xBD01_012C	GPABISR	Port A/B interrupt register					
	T	GPIO C/D					
0xBD01_0130	GPCDDATA	Port C/D data register					
0xBD01_0134	GPCDDIR	Port C/D direction register					
0xBD01_0138	GPCDIMR	Port C/D interrupt mask register					
0xBD01_013C	GPCDISR	Port C/D interrupt register					
		GPIO E/F					
0xBD01_0140	GPEFDATA	Port E/F data register					
0xBD01_0144	GPEFDIR	Port E/F direction register					
0xBD01_0148	GPEFIMR	Port E/F interrupt mask register					
0xBD01_014C	GPEFISR	Port E/F interrupt register					
		GPIO G					
0xBD01_0150	GPGDATA	Port G data register					
0xBD01_0154	GPGDIR	Port G direction register					
0xBD01_0158	GPGIMR	Port G interrupt mask register					
0xBD01_015C	GPGISR	Port G interrupt register					
	M	emory controller					
0xBD01_1000	MCR	Memory configuration register					
0xBD01_1004	MTCR0	Memory timing configuration register 0					
0xBD01_1008	MTCR1	Memory timing configuration register 1					
0xBD01_100C	NCR	NAND flash Control Register					
0xBD01_1010	NCAR	NAND flash Command Register					
0xBD01_1014	NADDR	NAND flash Address Register					
0xBD01_1018	NDR	NAND flash Data Register					
	IPS	Sec Crypto Engine					
0xBD10_0000	IPSSDAR	IPSec Source Descriptor Starting Address Register					
0xBD10_0004	IPSDDAR	IPSec Destination Descriptor Starting Address Register					
0xBD10_0008	IPSCFR	IPSec Configuration Register					
0xBD10_0009	IPSCR	IPSec Command Register					
0xBD10_000A	IPSIMR	IPSec Interrupt Mast Register					
0xBD10_000B	IPSISR	IPSec Interrupt Status Register					
0xBD10_000C	IPSCTR	IPSec Control Register					
	TK	IP MIC Calculator					
0xBD18_0000	MICLVAL	MIC L value Register					
0xBD18_0004	MICRVAL	MIC R value Register					
0xBD18_0008	MICSAR	MIC Start Address Register					
0xBD18_000C	MICLENR	MIC Length Register					
0xBD18_0010	MICDMAR	MIC DMA Length Register					
0xBD18_0014	MICCR	MIC Control Register					
0xBD18_0018	MICPSNR	MIC Pseudo Random Number Register					
	Ethernet0						
0xBD20_0000	ETH0_IDR	Ethernet0 ID register					
0xBD20_0008	ETH0_MAR	Ethernet0 Multicast Register					
0xBD20_0010	ETH0_TXOKCNT	Ethernet0 Transmit OK Counter Register					
0xBD20_0012	ETH0_RXOKCNT	Ethernet0 Receive OK Counter Register					
0xBD20_0014	ETH0_TXERR	Ethernet0 Transmit Error Counter Register					
0xBD20_0016	ETH0_RXERR	Ethernet0 Receive Error Counter Register					
0xBD20_0018	ETH0_MISSPKT	Ethernet0 Missed Packet Counter Register					
0xBD20_001A	ETH0_FAE	Ethernet0 Frame Alignment Error Counter Register					
0xBD20_001C	ETH0_TX1COL	Ethernet0 Transmit 1st Collision Counter Register					

0. DD 20. 004E	Emilia mini (GO)	T1
0xBD20_001E_com	ETH0_TXMCOL	Ethernet0 Transmit Multi-Collision Counter Register
0xBD20_0020	ETH0_RXOKPHY	Ethernet0 RX Physical Address Matched Register
0xBD20_0022	ETH0_RXOKBRD	Ethernet0 RX OK of Broadcast Matched Register
0xBD20_0024	ETH0_RXOKMUL	Ethernet0 RX OK of Multicast Matched Register
0xBD20_0026	ETH0_TXABT	Ethernet0 TX Abort Counter Register
0xBD20_0028	ETH0_TXUNDRN	Ethernet0 TX under-run Counter Register
0xBD20_0034	ETH0_TRSR	Ethernet0 Transmit/Receive Status Register
0xBD20_003B	ETH0_CR	Ethernet0 Command Register
0xBD20_003C	ETH0_IMR	Ethernet0 Interrupt Mask Register
0xBD20_003E	ETH0_ISR	Ethernet0 Interrupt Status Register
0xBD20_0040	ETH0_TCR	Ethernet0 Transmit Configuration Register
0xBD20_0044	ETH0_RCR	Ethernet0 Receive Configuration Register
0xBD20_0058	ETH0_MSR	Ethernet0 Media Status Register
0xBD20_005C	ETH0_MIIAR	Ethernet0 MII Access Register
0xBD20_1300	ETH0_TXFDP1	Ethernet0 TX First Descriptor 1 Register
0xBD20_1304	ETH0_TXCDO1	Ethernet0 TX Current Descriptor Offset 1 Register
0xBD20_1380	ETH0_TXFDP2	Ethernet0 TX First Descriptor 2 Register
0xBD20_1384	ETH0_TXCDO2	Ethernet0 TX Current Descriptor Offset 2 Register
0xBD20_13F0	ETH0_RXFDP	Ethernet0 RX First Descriptor Register
0xBD20_13F4	ETHO_RXCDO	Ethernet0 RX Current Descriptor Offset Register
0xBD20_13F6	<u> </u>	Ethernet0 RX Descriptor Ring Size Register
0xBD20_1430		Ethernet0 RX CPU's Descriptor Number Register
0xBD20_1432		Ethernet0 RX Descriptor Number difference Register
0xBD20_1434	ETH0_IOCMD	Ethernet0 I/O Command Register
0XDD20_1434		CM Controller
0xBD28_0000	PCMCR	PCM interface Control Register
	PCMCHCNR	PCM Channel specific Control Register
	PCMTSR	PCM Time Slot Assignment Register
	PCMBSIZE	PCM Channels Buffer Size register
	CH0TXBSA	PCM Channel 0 TX buffer starting address pointer
	CH1TXBSA	PCM Channel 1 TX buffer starting address pointer
	CH2TXBSA	PCM Channel 2 TX buffer starting address pointer
		PCM Channel 3 TX buffer starting address pointer
	CH3TXBSA	PCM Channel 0 RX buffer starting address pointer
	CHORXBSA CHIRXBSA	<u> </u>
	CH1RXBSA	PCM Channel 1 RX buffer starting address pointer
	CH2RXBSA	PCM Channel 2 RX buffer starting address pointer
	CH3RXBSA	PCM Channel 3 RX buffer starting address pointer
_	PCMIMR	PCM channels Interrupt Mask Register
0xBD28_0034	PCMISR	PCM channels Interrupt Status Register
		Ethernet1
0xBD30_0000	ETH1_IDR	Ethernet 1 ID register
0xBD30_0008	ETH1_MAR	Ethernet1 Multicast Register
0xBD30_0010	ETH1_TXOKCNT	Ethernet1 Transmit OK Counter Register
0xBD30_0012	ETH1_RXOKCNT	Ethernet1 Receive OK Counter Register
0xBD30_0014	ETH1_TXERR	Ethernet1 Transmit Error Counter Register
0xBD30_0016	ETH1_RXERR	Ethernet1 Receive Error Counter Register
0xBD30_0018	ETH1_MISSPKT	Ethernet1 Missed Packet Counter Register
0xBD30_001A	ETH1_FAE	Ethernet1 Frame Alignment Error Counter Register
0xBD30_001C	ETH1_TX1COL	Ethernet1 Transmit 1st Collision Counter Register
0xBD30_001E	ETH1_TXMCOL	Ethernet1 Transmit Multi-Collision Counter Register
0xBD30_0020	ETH1_RXOKPHY	Ethernet 1 RX Physical Address Matched Register
0xBD30_0022	ETH1_RXOKBRD	Ethernet 1 RX OK of Broadcast Matched Register
0xBD30_0024	ETH1_RXOKMUL	Ethernet1 RX OK of Multicast Matched Register
0xBD30_0026	ETH1_TXABT	Ethernet1 TX Abort Counter Register
0xBD30_0028	ETH1_TXUNDRN	Ethernet1 TX Underrun Counter Register
0xBD30_0034	ETH1_TRSR	Ethernet1 Transmit/Receive Status Register
0xBD30_003B	ETH1_CR	Ethernet 1 Command Register

0xBD30_003C_com	ETH1_IMR	Ethernet1 Interrupt Mask Register
0xBD30_003E	ETH1_ISR	Ethernet1 Interrupt Status Register
0xBD30_0040	ETH1_ISR ETH1_TCR	Ethernet1 Transmit Configuration Register
0xBD30_0044	ETH1_RCR	Ethernet1 Receive Configuration Register
0xBD30_0058	ETH1_MSR	Ethernet 1 Media Status Register
0xBD30_005C	ETH1_MIIAR	Ethernet 1 MII Access Register
0xBD30_1300	_	Ethernet 1 TX First Descriptor 1 Register
0xBD30_1304	ETH1_TXCDO1	Ethernet1 TX Current Descriptor Offset 1 Register
0xBD30_1380		Ethernet1 TX First Descriptor 2 Register
0xBD30_1384	ETH1_TXCDO2	Ethernet1 TX Current Descriptor Offset 2 Register
0xBD30_13F0	ETH1_RXFDP	Ethernet1 RX First Descriptor Register
0xBD30_13F4	ETH1_RXCDO	Ethernet1 RX Current Descriptor Offset Register
0xBD30_13F6	ETH1_RXRINGSIZE	Ethernet1 RX Descriptor Ring Size Register
0xBD30_1430	ETH1_RXCPUDESC	Ethernet1 RX CPU's Descriptor Number Register
0xBD30_1432	ETH1_RXPSEDESC	Ethernet1 RX Descriptor Number difference Register
0xBD30_1434	ETH1_IOCMD	Ethernet1 I/O Command Register
		LAN controller
0xBD40_0000	WLAN_ID	WLAN ID
0xBD40_0008	WLAN_MAR	WLAN multicast register
0xBD40_0018	WLAN_TSFTR	WLAN timing synchronization function timer register
0xBD40_0020	WLAN_TLPDA	WLAN transmit low priority descriptors start address
0xBD40_0024	WLAN_TNPDA	WLAN transmit normal priority descriptors start address
0xBD40_0028	WLAN_THPDA	WLAN transmit high priority descriptors start address
0xBD40_002C	WLAN_BRSR	WLAN basic rate set register
0xBD40_002E	WLAN_BSSID	WLAN basic service set ID
0xBD40_0034	WLAN_RR	WLAN response rate
0xBD40_0035	WLAN_EIFS	WLAN EIFS register
0xBD40_0037	WLAN_CR	WLAN command register
0xBD40_003C	WLAN_IMR	WLAN interrupt mask register
0xBD40_003E 0xBD40_0040	WLAN_ISR	WLAN interrupt status register
0xBD40_0040 0xBD40_0044	WLAN_TCR	WLAN transmit configuration register WLAN receive configuration register
0xBD40_0044 0xBD40_0048	WLAN_RCR WLAN_TINT	WLAN timer interrupt register
0xBD40_0048	WLAN_TBDA	WLAN transmit beacon descriptor start address
0xBD40_004C	WLAN_CR	WLAN command register
0xBD40_0051	WLAN_CONFIG0	WLAN configuration register 0
0xBD40_0052	WLAN_CONFIG1	WLAN configuration register 1
0xBD40_0053	WLAN_CONFIG2	WLAN configuration register 2
0xBD40_0054	WLAN_ANAPARM	WLAN analog parameter
0xBD40_0058	WLAN_MSR	WLAN media status register
0xBD40_0059	WLAN_CONFIG3	WLAN configuration register 3
0xBD40_005A	WLAN_CONFIG4	WLAN configuration register 4
0xBD40_005B	WLAN_TESTR	WLAN test mode register
0xBD40_0070	WLAN_BCNITV	WLAN beacon interval register
0xBD40_0072	WLAN_ATIMWND	WLAN ATIM window register
0xBD40_0074	WLAN_BINTRITV	WLAN beacon interrupt interval register
0xBD40_0076	WLAN_ATIMTRITV	WLAN ATIM interrupt interval register
0xBD40_007C	WLAN_PHYADDR	WLAN PHY address register
0xBD40_007D	WLAN_PHYDATAW	WLAN write data to PHY
0xBD40_007E	WLAN_PHYDATAR	WLAN read data from PHY
0xBD40_0080	WLAN_RFPINOUT	WLAN RF Pins output register
0xBD40_0082	WLAN_RFPINEN	WLAN RF Pins enable register
0xBD40_0084	WLAN_RFPINSEL	WLAN RF Pins select register
0xBD40_0086	WLAN_RFPININPU	WLAN RF Pins input register
	T	
0xBD40_0088	WLAN_RFPARA	WLAN RF parameter register
0xBD40_008C	WLAN_RFTIMING	WLAN RF timing register

0xBD40_009C	WLAN TXAGC	WLAN auto TX AGC control
0xBD40_009D	_	WLAN auto TX AGC control for CCK
0xBD40_009E	WLAN_OFDMTXA	WLAN auto TX AGC control for OFDM
	GC	
0xBD40_009F	WLAN_ANTSEL	WLAN TX Antenna select
0xBD40_00A0	WLAN_CAMRW	WLAN CAM (Content Access Memory) read/write
		register
0xBD40_00A4	WLAN_CAMOUTP	WLAN data written to CAM
	UT	
0xBD40_00A8	WLAN_CAMINPUT	WLAN data read from DMA
0xBD40_00AC	WLAN_CAMDEBU	WLAN CAM debug interface
	G	
0xBD40_00B0	WLAN_WPACONFI	WLAN WPA (WiFi Protected Access) configuration
0. DD 40. 00D2	G AND A FORMACIA	register
0xBD40_00B2	WLAN_AESMASK	WLAN AES (Advanced Encryption Standard) mask
0DD40_00D4	WI AN CIEC	register
0xBD40_00B4 0xBD40_00B5	WLAN_SIFS WLAN_DIFS	WLAN SIFS setting register WLAN DIFS setting register
0xBD40_00B5	WLAN_DIFS WLAN_SLOTTIME	WLAN slot setting register
0xBD40_00B0	WLAN_SECTIME WLAN_USTUNE	WLAN micro-second fine tune register
0xBD40_00BC	WLAN_CWCONFIG	WLAN contention window config register
0xBD40_00BD	WLAN_CWVALUE	WLAN contention window value register
0xBD40_00BE	WLAN_RATECTRL	WLAN auto rate fallback control register
0xBD40_00D8	WLAN_CONFIG5	WLAN configuration register 5
0xBD40_00D9	WLAN_TPPOLL	WLAN transmit priority polling register
0xBD40_00DC	WLAN_CWR	WLAN contention window register
0xBD40_00DE	WLAN_RETRYCTR	WLAN retry count register
0xBD40_00E4	WLAN_RDSAR	WLAN receive descriptor start address register
0xBD40_0100	WLAN_DFSCR	WLAN DFS control register
0xBD40_0104	WLAN_ DFSSLR	WLAN DFS Schmitt trigger low-threshold setting
		register
0xBD40_0100	WLAN_DFSCR	WLAN DFS control register
0xBD40_0104	WLAN_DFSCR	WLAN DFS control register
0xBD40_0108	WLAN_DFSSHR	WLAN DFS Schmitt trigger high-threshold setting
		register
0xBD40_010C	WLAN_DFSDLR	WLAN DFS Pulse-duration low-threshold setting
		register
0xBD40_0110	WLAN_DFSDHR	DFS Pulse-duration high-threshold setting register
0xBD40_0114	WLAN_DFSPCR	WLAN DFS valid pulse count register
0xBD40_0118	WLAN_DFSTS0R	WLAN DFS Time Stamp 0 register
0xBD40_011C	WLAN_DFSTS1R	WLAN DFS Time Stamp 1 register
0xBD40_0120	WLAN_DFSTS2R	WLAN DFS Time Stamp 2 register
0xBD40_0124	WLAN_DFSTS3R	WLAN DFS Time Stamp 3 register
0xBD40_0128	WLAN_DFSTS4R WLAN_DFSTS5R	WLAN DFS Time Stamp 4 register
0xBD40_012C		WLAN DES Time Stamp 5 register
0xBD40_0130 0xBD40_0134	WLAN_DFSTS6R WLAN_DFSTS7R	WLAN DFS Time Stamp 6 register WLAN DFS Time Stamp 7 register
0xBD40_0134	WLAN_DFSTS8R	WLAN DFS Time Stamp 8 register
0xBD40_013C	WLAN_DISTS9R	WLAN DFS Time Stamp 9 register
0xBD40_0140	WLAN_DFSTSAR	WLAN DFS Time Stamp A register
0xBD40_0144	WLAN_DFSTSBR	WLAN DFS Time Stamp B register
0xBD40_0148	WLAN_DFSTSCR	WLAN DFS Time Stamp C register
0xBD40_014C	WLAN_DFSTSDR	WLAN DFS Time Stamp D register
0xBD40_0150	WLAN_DFSTSER	WLAN DFS Time Stamp E register
0xBD40_0154	WLAN_ DFSTSFR	WLAN DFS Time Stamp F register
0xBD40_0158	WLAN_DFSTSGR	WLAN DFS Time Stamp G register
0xBD40_015C	WLAN_DFSTSHR	WLAN DFS Time Stamp H register

//\	0xBD40 <u></u> 0160_com	WLAN_DFSTSIR	WLAN DFS Time Stamp I register
	0xBD40_0164	WLAN_ DFSTSJR	WLAN DFS Time Stamp J register
	0xBD40_0168	WLAN_DFSCTSR	WLAN DFS Current Time Stamp register

6. System Configuration

In RTL8186, several system parameters are loaded from hardware settings rather than software configuration. The signal group ICFG controls the default setting for memory width and system clock. The values of ICFG signals are strapped from GPIO pins. The mapping relationship is illustrated as following table:

ICFG Bit field	Strapping Pin Name	Default State	Function Description	
0	RFLEPIN	N/A	CPU clock rate select. ICFG[3:0]. See the table below for detailed CPU and	
1	CALENPIN	N/A	SDRAM clock setting combination.	
2	CALMODEPIN	N/A		
3	VCOPDNPIN	N/A		
4	GPAPIN[4]	N/A	SDRAM clock synchronous/asynchronous select.	
			1: Synchronous (identical to system bus clock)	
			0: Asynchronous	
5	GPAPIN[5]	1	NOR-type flash data bus width select	
6	GPAPIN[9]	0	ICFG[6:5] = 00: 8-bit data bus	
			01: 16-bit data bus	
			10: 32-bit data bus	
			11: Reserved	
7	WTXDPIN[0]	0	SDRAM clock delay parameter	
8	WTXDPIN[1]	0	ICFG[8:7] = 00: No delay	
			01: Delay 1 unit	
			10: Delay 2 units	
			11: Delay 3 units	
9	WTXDPIN[2]	0	Boot device select	
			ICFG[9] = 0: Boot from NOR-type flash	
		_	1: Boot from NAND-type flash	
10	WTXDPIN[3]	0	Function switch of PCM and WAN in 208 QFP package	
			ICFG[10] = 0: Select WAN function at WAN pin-out in 208 QFP package	
4.4	a o i imopia i		1: Select PCM function at WAN pin-out in 208 QFP package	
11	SOUT0PIN	0	Function switch of I2C and UART0 in 208 QFP package	
			ICFG[11] = 0: Select UART0 function at UART0 pin-out in 208 QFP package	
10	MADINI[10]	N/A	1: Select I2C function at UART0 pin-out in 208 QFP package	
12	MAPIN[19]	N/A	Function switch of GPIOB and UARTO	
			ICFG[12] = 0: Select UART0 function at UART0 pin-out	
13	MAPIN[20]	N/A	1: Select GPIO B function at UART0 pin-out Function switch of GPIO C and Memory data upper 16 pins	
15	MAPIN[20]	IN/A	ICFG[13] = 0: Select Memory Data function at memory data pin-out	
			1: Select GPIO C function at memory data pin-out	
14	MAPIN[21]	N/A	Function switch of GPIO D and WAN function at WAN pin-out. Notice that the	
14	WIAI IN[21]	1 \ / /A	WAN also has function switch with PCM, the GPIO D function is selected at WAN	
			pin-out only when PCM function is not selected.	
			ICFG[14] = 0: Select WAN function or PCM function at WAN pin-out	
			1: Select GPIO D function at WAN pin-out	
15	TRSWPIN	0	Function switch of GPIO E and NAND flash control pin-out	
	11.5111	Ĭ	ICFG[15] = 0: Select NAND flash control function at NAND flash pin-out	
			1: Select GPIO E function at NAND flash pin-out	
16	TRSWBPIN	1	Function switch of GPIO F and PCI AD bus pin-out	
-		1	ICFG[16] = 0: Select GPIO F function at PCI AD bus pin-out	
			1: Select PCI AD function at PCI AD bus pin-out	
17	ANTSELPIN	0	JTAG function enable	
•			ICFG[17] = 0: JTAG function disabled	

ww.DataSheet4	4U.com		1: JTAG function enabled	
18	ANTSELBPIN	1	System bus grant control by external pin	
			ICFG[18] = 0: Enable external control of system bus grant	
			1: Disable external control system bus grant	
19	LTXDPIN[0]	N/A	External clock enable. Notice than this bit is effective only when ICFG[3:0] = 0001.	
			ICFG[19] = 0: System clock comes from internal PLL	
			1: System clock comes from external pin input.	
20	LTXDPIN[1]	N/A	CPU Scan test enable	
			ICFG[20] = 0: Disable Scan test of CPU	
			1: Enable Scan test of CPU	
21	LTXDPIN[2]	N/A	CP test enable	
			ICFG[21] = 0: Disable CP test	
			1: Enable CP test	
22	LTXDPIN[3]	N/A	Lexra mode CP test enable	
			ICFG[22] = 0: Disable Lexra mode CP test	
			1: Enable Lexra mode CP test	

The operation rate of CPU/System Bus and SDRAM is determined by the signal ICFG[3-0] as follows.

ICFG[3-0]	CPU/System Bus clock rate	SDRAM clock rate
	(unit: MHz)	(unit: MHz)
0000	200.0	133.3
0001	200.0	133.3
0010	200.0	100.0
0011	200.0	160.0
0100	200.0	125.0
0101	220.0	146.7
0110	213.3	142.2
0111	213.3	106.7
1000	192.0	128.0
1001	192.0	115.2
1010	190.0	95.0
1011	180.0	120.0
1100	180.0	90.0
1101	100.0	100.0
1110	100.0	50.0
1111	66.7	33.3

Please note, the CPU clock will be synchronous to system bus clock.

Besides the signal group, there is a set of registers provided for software to control the internal bridge or clock module. Also there is another set of registers to control the Lexra bus arbitration.

The RTL8186 has three bridges attached to system bus, thus it will have four master devices including CPU, and which needs an arbiter for bus access arbitration. The system arbiter provides a dynamic adjustable priority. Through setting of ARB_PRIREG register, the weight of bus master device can be changed in software according to the need of different applications. The three bridges contains 9 bus masters devices, each of them are:

Bridge name	Attached Bus Master Devices
BDG0	IPSec engine, TKIP-MIC engine, Ethernet0
BDG1	Ethernet1, WLAN controller
PCI Bridge	PCI device 0,1,2,3

The bus clocks under each bridge also can be configurable through register BDGCR. Note that the clock divider at BDGCR cannot be odd number or zero.

Arbitration of each bus masters under certain bridge can be configured through corresponding bridge priority setting register. For example, setting BDG0_PRIREG can prioritize the three bus masters of bridge0. Please note, the priority weight of any

bus master cannot be zero; otherwise the master will never gain the bus grant.

These system-configuration related registers are defined as follow:

Register Summary

Virtual address	Size (byte)	Name	Description
0xBD01_0100	4	BDGCR	BDG0, BDG1 and PCI bridge configuration
			register
0xBD01_0104	4	PLLMNR	RTL8186 DPLL M, N parameter register
0xBD01_0108	4	SYSCLKR	RTL8186 System clock setting register
0xBD01_0110	4	TKNR	RTL8186 master token setting register
0xBD01_0114	4	BDGWTR	RTL8186 bridge weight setting register
0xBD01_0118	4	PCIWTR	RTL8186 PCI bridge weight setting register

0xBD01_0100 Bridge Configuration Register (BDGCR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								()	Rese	erve	1)										PD	IV			B1	DIV	,		BOI	OIV	,

Reset: 0x0000_0511.

Bit	Bit Name	Description	R/W	InitVal
11-8	PDIV	Bus clock to PCI Bridge clock ratio.	R/W	0101
		0001 = 2:1,		
		0011 = 4:1,		
		0101= 6:1,		
		0111= 8:1,		
		Other values are reserved.		
7-4	B1DIV	Bus clock to Bridge1 clock ratio.	R/W	0001
		0001 = 2:1,		
		0011 = 4:1,		
		0101 = 6:1,		
		0111= 8:1,		
		Other values are reserved.		
3-0	B0DIV	Bus clock to Bridge0 clock ratio.	R/W	0001
		0001 = 2:1,		
		0011 = 4:1,		
		0101 = 6:1,		
		0111= 8:1,		
		Other values are reserved.		

0xBD01_0104 DPLL M,N parameter Register (PLLMNR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					(1	Rese	rvec	(h						I	4	R	M			MD	ΝI				R			ľ	NDI	V	
														I	R	S	N								S						
														I	В	V	Ε								V						
														V	V	D	N								D						
															S																

Reset: 0x0003_1703

Bit	Bit Name	Description	R/W	InitVal
17-16	ARBWS	Arbiter Wait Parameter Setting.	R/W	11
14	MNEN	MDIV and NDIV write enable,	R/W	0
		0: disable,		
		1: enable.		
13-8	MDIV	DPLL M parameter	R/W	010111
4-0	NDIV	DPLL N parameter	R/W	00011

Note: The equation of DPLL clock rate is: 40MHz*(M+1)/(N+1)

	0x	$\mathbf{3D0}$	1_0	108																S	yste	m C	loc	k Se	ettir	ıg F	Regi	iste	r (S	YS	CLK	R)
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0)
ĺ										P							С		R			CP	US		M		R	•		ME	MS	
									(C							P		S						Ε		S					

31 30 29 26 27 20 23 24 23	22 21 20 19 10 17 10	13	14 13 12	11 10 9 8	/	7 +	3 2 1 0
P	•	C	R	CPUS	M	R	MEMS
C		P	S		Е	S	
I		U	V		M	V	
I		E	D		Ε	D	
C)	N			N		
S	}						

Reset: 0x00

Bit	Bit Name	Description	R/W	InitVal
23-22	PCIIOS	PCI IO map control register.	R/W	00
		00 – use PCI IO map for 16 bits		
		11 – use PCI IO map for 32 bits		
15	CPUEN	Write enable control for CPU setting register.	R/W	0
11-8	CPUS	CPU setting register	R/W	0000
7	MEMEN	Write enable control for memory setting	R/W	0
		register		
3-0	MEMS	Memory setting register	R/W	0000

The relation among CPUS/MEMS value, CPU/System-bus clock, SDRAM timing and signal ICFG[3-0] are defined as follows.

ICFG[3-0]	CPUS	MEMS	CPU/System Bus clock	SDRAM clock rate
			rate (unit: MHz)	(unit: MHz)
0000	2	4	200.0	133.3
0001	2	4	200.0	133.3
0010	2	5	200.0	100.0
0011	2	5	200.0	160.0
0100	3	5	200.0	125.0
0101	2	4	220.0	146.7
0110	2	4	213.3	142.2
0111	2	5	213.3	106.7
1000	2	4	192.0	128.0
1001	1	3	192.0	115.2
1010	2	5	190.0	95.0
1011	2	4	180.0	120.0
1100	1	4	180.0	90.0
1101	5	5	100.0	100.0
1110	4	6	100.0	50.0
1111	4	6	66.7	33.3

0xBD01 0110 Master Token Register (TKNR)

																											8		. (–		,
ſ	31	30	29	28	27	26	25	24	23	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			(CPU	JTKI	N				В	DG(OTK	N					BI	DG1	TK	N					P	CII	3TK	N		

Reset: 0x0F01_0101

Bit	Bit Name	Description	R/W	InitVal
31-24	CPUTKN	CPU Token setting	R/W	00001111
23-16	BDG0TKN	BDG0 Token setting	R/W	00000001
15-8	BDG1TKN	BDG1 Token setting	R/W	00000001
7-0	PCIBTKN	PCI Bridge Token setting	R/W	00000001

0xBD01_0114		Bridge Weight Setting Register (BDGWTR)
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14	13 12 11 10 9 8 7 6 5 4 3 2 1 0

www.DaB1R3et4U.com B1R2	B1R1	B1R0	B0R3	B0R2	B0R1	B0R0

Reset: 0x1111_1111

Bit	Bit Name	Description	R/W	InitVal
31-28	B1R3	BDG1 Master 3 request weight setting	R/W	0001
27-24	B1R2	BDG1 Master 2 request weight setting	R/W	0001
23-20	B1R1	BDG1 Master 1 request weight setting	R/W	0001
19-16	B1R0	BDG1 Master 0 request weight setting	R/W	0001
15-12	B0R3	BDG0 Master 3 request weight setting	R/W	0001
11-8	B0R2	BDG0 Master 2 request weight setting	R/W	0001
7-4	B0R1	BDG0 Master 1 request weight setting	R/W	0001
3-0	B0R0	BDG0 Master 0 request weight setting	R/W	0001

0xBD01_0118 PCI Master Weight Setting Register (PCIWTR)

					(- 0-11)
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12	11 10 9 8	7 6 5 4	3 2 1 0
(Res	erved)	PBR3	PBR2	PBR1	PBR0

Reset: 0x0000_2222

Bit	Bit Name	Description	R/W	InitVal
15-12	PBR3	PCI Bridge Master 3 request weight setting	R/W	0001
11-8	PBR2	PCI Bridge Master 2 request weight setting	R/W	0001
7-4	PBR1	PCI Bridge Master 1 request weight setting	R/W	0001
3-0	PBR0	PCI Bridge Master 0 request weight setting	R/W	0001

7. Interrupt Controller

The RTL8186 provides six internal hardware-interrupt inputs (IRQ0-IRQ5). Some devices share the same IRQ signal. The following table displays the IRQ map used by devices.

IRQ Number	Interrupt Source
0	Timer/Counter interrupt.
1	GPIO/LBC interrupt.
2	WLAN interrupt.
3	UART/PCI interrupt.
4	Ethernet0 interrupt.
5	Ethernet1/MIC/IPSEC interrupt.

When any one of above IRQ is happened, RTL8186 will assert the corresponding bit in CPU coprocessor cause and status register. Besides, it has two additional registers for the interrupt control. The **GIMR** register can enable/disable the peripheral interrupt source. The **GISR** shows the pending peripheral interrupt status.

Register Summary

Virtual address	Size (byte)	Name	Description			
0xBD01_0000	2	GIMR Global interrupt mask register				
0xBD01_0004	2	GISR	Global interrupt status register			

0xBD01_0000						Glo	bal	Int	err	upt	Μa	ask	Reg	;iste	er (0	GIN	IR)
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			(Res	serv	red)		M	Ι	L	P	P	Е	Е	U	W	G	T
							I	P	В	C	C	T	T	Α	L	P	C
							C	S	C	M	I	Н	Н	R	Α	I	I
							I	I	I	I	I	1	0	T	N	O	Ε
							E	Е	Е	Е	Ε	I	I	I	I	I	
												Ε	Ε	Ε	Ε	Ε	

Reset: 0x0000 0000

Bit	Bit Name	R/W	InitVal	
10	MICIE	MIC calculator interrupt enable.	R/W	0
		0: Disable, 1: Enable		
9	IPSIE	IPSec engine interrupt enable.	R/W	0
		0: Disable, 1: Enable		
8	LBC1E	LBC time-out interrupt enable.	R/W	0
		0: Disable, 1: Enable		
7	PCMIE	PCM interrupt enable.	R/W	0
		0: Disable, 1: Enable		
6	PCIIE	PCI interrupt enable.	R/W	0
		0: Disable, 1: Enable		
5	ETH1IE	Ethernet1 interrupt enable.	R/W	0
		0: Disable, 1: Enable		
4	ETH0IE	Ethernet0 interrupt enable.	R/W	0
		0: Disable, 1: Enable		
3	UARTIE	UART interrupt enable.	R/W	0
		0: Disable 1: Enable		
2	WLANIE	WLAN controller interrupt enable.	R/W	0
		0: Disable, 1: Enable		
1	GPIOIE	GPIO interrupt enable.	R/W	0
		0: Disable, 1: Enable		
0	TCIE	Timers/Counters interrupt enable.	R/W	0
		0: Disable, 1: Enable		

0xBD01 0004 Global Interrupt Status Register (GISR)

31 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		(Re	serv	red)		M	I	L	P	P	Е	Е	U	W	G	T
						I	P	В	С	C	T	T	Α	L	P	C
						C	S	C	M	Ι	Н	Н	R	A	I	Ι
						I	I	I	Ι	Ι	1	0	T	N	O	P
						P	P	P	P	P	I	I	I	I	I	ı
											P	P	P	P	P	ı

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
10	MICIP	MIC calculator interrupt pending flag.	R	0
		0: no pending, 1: pending		
9	IPSIP	IPSec engine interrupt pending flag.	R	0
		0: no pending, 1: pending		
8	LBCIP	LBC time-out interrupt pending flag.	R	0
		0: no pending, 1: pending		
7	PCMIP	PCM interrupt pending flag.	R	0
		0: no pending, 1: pending		
6	PCIIP	PCI interrupt pending flag.	R	0
		0: no pending, 1: pending		
5	ETH1IP	Ethernet1 interrupt pending flag.	R	0
		0: no pending, 1: pending		
4	ETH0IP	Ethernet0 interrupt pending flag.	R	0

ww.DataS	heet4U.com	0: no pending, 1: pending		
3	UARTIP	UARTI interrupt pending flag.	R	0
		0: no pending, 1: pending		
2	WLANIP	WLAN controller interrupt pending flag.	R	0
		0: no pending, 1: pending		
1	GPIOIP	GPIO interrupt pending flag.	R	0
		0: no pending, 1: pending		
0	TCIP	Timers/Counters interrupt pending flag.	R	0
		0: no pending, 1: pending		

8. Memory Controller

RTL8186 integrates a memory control module to access external SDRAM and flash memory.

The interface is designed to PC100 or PC133-compliant SDRAM, supports auto-refresh mode, which requires 4096 refresh cycle within 64 ms. The SDRAM interface supports two chips (CS0#, and CS1#), and the SDRAM size and timing is configurable in registers. The data width of SDRAM could be chosen as 16-bit or 32-bit in register as well. If 32-bit is configured, 2 16-bit SDRAM chips may be used to expand the data bus width to 32 bits or use one 32-bit SDRAM chip is allowable.

Besides, RTL8186 could also supports two flash memory chips (F_CS0# and F_CS1#). The interface could support only 16-bit NOR-type flash memory. Another flash memory type, NAND flash, is also support by this interface. The system can be configured to boot from NOR type flash or NAND. When NOR type is used, the system will boot from KSEG1 at virtual address 0xBFC0_0000 (physical address: 0x1FC0_0000). Chip1 flash memory will be mapped to the address "0x1FC0_000 + flash size". The flash size is configurable from 1M to 8M bytes for each chip. If flash size set to 4M or 8M the 0xBFC0_0000 still map the first 4M bytes of flash. There will have a new memory mapping from 0xBE00_0000. The 0xBE00_0000 mapped to the chip0 byte 0.

If NAND type flash is selected in signal group ICFG[9], the memory controller will move first block of NAND flash (16K byte long) to SDRAM at virtual address $0x8000_00000$, and then it will run the system software from there. The first 3^{rd} and 4^{th} bytes of the image will be referred for SDRAM configuration setting, please refer the paragraph 'NAND flash layout' below for detail.

Register Summary

Virtual address	Size (byte)	Name	Description
0xBD01_1000	4	MCR	Memory Configuration Register
0xBD01_1004	4	MTCR0	Memory Timing Configuration Register 0
0xBD01_1008	4	MTCR1	Memory Timing Configuration Register 1
0xBD01_100C	4	NCR	NAND Flash Control Register
0xBD01_1010	4	NCAR	NAND Flash Command Register
0xBD01_1014	4	NADDR	NAND Flash Address Register
0xBD01_1018	4	NDR	NAND Flash Data Register

Note: These registers should be accessed in double word.

0xB	BD 01	1_10	000																	Μe	emo	ry (Con	figı	ıra	tion	₽	egist	ter (M(CR)
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
F	. 1]	7	3	C				R			S	M		В								(R	eser	ved	l)						
I	,	Ι)	Α				S			D	C		U																	
S	5	F	₹	S			,	V			В	K		S																	
I	[5	S	L				D			U	2		C																	
Z	Z]	I								S	L		L																	
F	Ξ.	7	Z								W	C		K																	
		I	Ξ								I	K																			
											D																				

Reset: 0xB290_0000

Bit	Bit Name	Description	R/W	InitVal
31-30	FLSIZE	Flash size respective to one bank (byte).	R/W	11
		00: 1M		
		01: 2M		
		10: 4M		
		11: 8M		
29-28	SDRSIZE	SDRAM size respective to one bank (bit).	R/W	01
		00: 512Kx16x2		
		01: 1Mx16x4		
		10: 2Mx16x4		
		11: Reserved		
27	CASL	CAS Latency	R/W	0
		0: Latency=2		
		1: Latency=3		
26-21	RSVD	Reserved	R	0
20	SDBUSWID	SDRAM bus width	R/W	1
		0: 16 bit		
		1: 32 bit		
19	MCK2LCK	Memory clock to Lexra bus clock ratio.	R	
		Cooperates with ICFG[3-0] for initialization		
		ICFG[3-0]=1111 CPU=200 MEM=100		
		ICFG[3-0]=1110 CPU=100 MEM=100		
		ICFG[3-0]=0101 CPU=166 MEM=133		
18-16	BUSCLK	Bus Clock to control auto-refresh timing	R/W	000
		000: 200 MHz		
		001: 100 MHz		
		010: 50 MHz		
		011: 25 MHz		
		100: 12.5 MHz		
		101: 6.25 MHz		
		110: 3.125 MHz		
		111: 1.5625 MHz		
15-0	Reserved	Must be set to bit value 00.	R/W	00

 0xBD01_1004
 Memory Timing Configuration Register 0 (MTCR0)

 31
 30
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 CE0T_CS
 CE0T_WP
 CE1T_CS
 CE1T_WP
 EXCS0T_CS
 EXCS0T_WP
 (Reserved)

Reset: 0xFFFF_FF00

Bit	Bit Name	Description	R/W	InitVal
31-28	CE0T_CS	The timing interval between F_CE0# to WR#	R/W	1111
		Basic unit, 2*clock cycle		
		"0000" means 1 unit (2 clock cycles)		
27-24	CE0T_WP	The timing interval for WR# to be pulled-low	R/W	1111
		Basic unit, 2*clock cycle		
		"0000" means 1 unit (2 clock cycles)		
23-20	CE1T_CS	The timing interval between F_CE1# to WR#	R/W	1111
		Basic unit, 2*clock cycle		
		"0000" means 1 unit (2 clock cycles)		
19-16	CE1T_WP	The timing interval for WR# to be pulled-low	R/W	1111
		Basic unit, 2*clock cycle		

ww.DataS	neet4U.com	"0000" means 1 unit (2 clock cycles)		
15-12	EXCS0T_CS	The timing interval between EXT_CE0# to WR#	R/W	1111
		Basic unit, 2*clock cycle		
		"0000" means 1 unit (2 clock cycles)		
11-8	EXCS0T_WP	The timing interval for WR# to be pulled-low	R/W	1111
		Basic unit, 2*clock cycle		
		"0000" means 1 unit (2 clock cycles)		

Note: The clock cycle is based on memory clock.

0xBD01_1008	Memory Timing Configuration Register 1 (MTCR1)
-------------	--

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13	12 11 10 9 8 7 6 5 4 3 2 1 0
(Reserved)	CE23T_RP CE23T_RAS CE23T_RFC
	(T_RCD)

Reset: 0x0000_1FFF

Bit	Bit Name	Description	R/W	InitVal
12-10	CE23T_RP	T_RP and T_RCD timing parameter	R/W	111
	(T_RCD)	Basic unit, 1*clock cycle		
		"000" means 1 unit (1 clock cycle)		
		Only "001" and "010" are valid for correct operation.		
9-5	CE23T_RAS	T_RAS timing parameter	R/W	11111
		Basic unit, 1*clock cycle		
		"0000" means 1 unit (1 clock cycle)		
4-0	CE23T_RFC	T_RFC timing parameter for refresh interval	R/W	11111
		Basic unit, 1*clock cycle		
		"0000" means 1 unit (1 clock cycle)		

Note: The clock cycle is based on memory clock.

0xBD01_100C

NAND	Flock	Control	Register	(NICD)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
N	R	R	W	(]	Rese	rvec	<u>d)</u>	(CE_	TWI	P	(CE_	ΓWI	3	(CE_	TRF	₹	C	E_T	RE	A		CE_	_TF	I		CE_	_TS	
F	S	В	В																												
R	V	S	S																												
В	D																														

Reset: 0xB0FF_FFFF

Bit	Bit Name	Description	R/W	InitVal
31	NFRB	Nand flash Ready/Busy status indication bit	R	1
		0: Busy		
		1: Ready		
30	RSVD	Reserved	R	0
29	RBS	Read Byte Swapping.	R/W	1
		0: The byte order of NDR register read is {0, 1, 2, 3}		
		1: The byte order of NDR register read is {3, 2, 1, 0}		
28	WBS	Write Byte Swapping.	R/W	1
		0: The byte order of NDR register write is {0, 1, 2, 3}		
		1: The byte order of NDR register write is {3, 2, 1, 0}		
23-20	CE_TWP	Write pulse width. Base unit: 1 * clock cycle	R/W	1111
19-16	CE_TWB	WE high to busy. Base unit: 1 * clock cycle	R/W	1111
15-12	CE_TRR	Ready to RE falling edge. Base unit: 1 * clock cycle	R/W	1111
11-8	CE_TREA	RE access time. Base unit: 1 * clock cycle	R/W	1111
7-4	CE_TH	CLE, CE, ALE, DATA and WE hold time. Base unit: 1* clock cycle	R/W	1111
3-0	CE_TS	CLE, CE, ALE and DATA setup time. Base unit: 1 * clock cycle	R/W	1111

0x	BD(1_1	010]	NAI	ID	Fla	sh (Con	nma	and	Re	gist	er (I	NC.	AR)
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
С	C										(I	Rese	rvec	<u>f)</u>												(CE_	CM	I D		
Ε	Е																														
C	C																														
S	S																														
4	5																														

Reset:	0x0000	0000

Bit	Bit Name	Description	R/W	InitVal
31	CECS4	Command enable to CS4 connected NAND flash	W	1
		'1': Command Enable		
		'0': No command enabled		
30	CECS5	Command enable to CS5 connected NAND flash	W	0
		'1': Command Enable		
		'0': No command enabled		
7-0	CE_CMD	Command port to NAND flash memory	W	0

0xBD01_1014 NAND Flash Address Register (NADDR)

31 30 29 28 27	26 2	25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
(Reserved)	A	A A	CE_ADD2	CE_ADD1	CE_ADDR0
	D	D D)		
	2	1 0			
	Е	E E			
	N	N N	T		

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
26	AD2EN	Address port 2 enable	W	0
		'1': Address port 2 is valid to output to NAND flash		
		'0': Address port 2 is not output to NAND flash		
25	AD1EN	Address port 1 enable	W	0
		'1': Address port 1 is valid to output to NAND flash		
		'0': Address port 1 is not output to NAND flash		
24	AD0EN	Address port 0 enable	W	0
		'1': Address port 0 is valid to output to NAND flash		
		'0': Address port 0 is not output to NAND flash		
23-16	CE_ADDR2	Address2 port to NAND flash memory.	W	0
15-8	CE_ADDR1	Address1 port to NAND flash memory.	W	0
7-0	CE_ADDR0	Address0 port to NAND flash memory.	W	0

0xBD01_1018 NAND Flash Data Register (NDR)

23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
DATA2	DATA1	DATA0

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-24	DATA3	NAND flash DATA0 port. Read/Write this field during data phase will	R/W	0
		reflects to external NAND flash I/O ports.		
		When bit RBS or bit WBS in NCR register is '1', this data byte is the		
		highest address of the register word. Else this byte is the lowest address		
		byte of the register word.		

23-16	DATA2 _{om}	NAND flash DATA1 port. Read/Write this field during data phase will reflects to external NAND flash I/O ports. When bit RBS or bit WBS in NCR register is '1', this data byte is the 3rd address of the register word. Else this byte is the 2nd address byte of the register word.	R/W	0
15-8	DATA1		R/W	0
7-0	DATA0	NAND flash DATA0 port. Read/Write this field during data phase will reflects to external NAND flash I/O ports. When bit RBS or bit WBS in NCR register is '1', this data byte is the lowest address of the register word. Else this byte is the highest address byte of the register word.	R/W	0

NAND flash layout

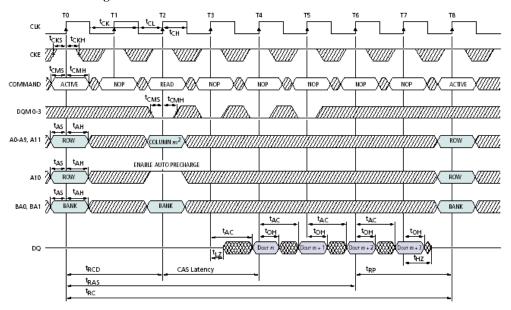
Address 0x0 – 0x1	Address 0x2 - 0x3	Address 0x4	•••	Address 0x4000	Address 0x4001		Address End
NAND fla	sh Header					Data	
	NAI	ND flash boot in	nage				

NAND flash header format

	Byt	te A	ddre	ess 3				Ву	te A	ddre	ess 2					By	te A	ddr	ess 1					Byte	Α	ddr	ess 0		
7 6	5	4	3	2	1	0	7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
S	C	S		В		T.	_RCD	7	$\Gamma_R A$	\S	Γ	_Rl	FC							O	PCC	DE							
D	Α	D		U																									
R	S	В		S																									
S	L	U		C																									
Z		S		L																									
		W		K																									
		I																											
		D																											

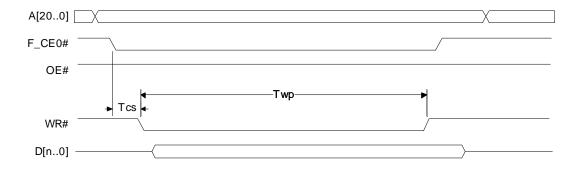
Byte Address 3

Bit	Bit Name	Description	R/W	InitVal
7-6	SDRSZ	SDRAM size respective to one bank (bit).	R/W	10
		00: 512Kx16x2		
		01: 1Mx16x4		
		10: 2Mx16x4		
		11: Reserved		
5	CASL	CAS Latency	R/W	0
		0: Latency=2		
		1: Latency=3		
4	SDBUSWID	SDRAM bus width	R/W	0
		0: 16 bit		
		1: 32 bit		
3-1	BUSCLK	Bus Clock to control auto-refresh timing	R/W	000
		000: 200 MHz		
		001: 100 MHz		
		010: 50 MHz		
		011: 25 MHz		
		100: 12.5 MHz		
		101: 6.25 MHz		

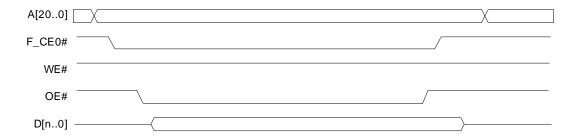


ww.DataS	heet4U.com	110: 3.125 MHz		
		111: 1.5625 MHz		
0	T_RCD	Combined with 1 st field of next table.		
Byte Ad	dress 2		·	
Bit	Bit Name	Description	R/W	InitVal
0-7-6	T_RCD	T_RP and T_RCD timing parameter	R/W	111
		Basic unit, 4*clock cycle		
		"000" means 1 unit (4 clock cycle)		
5-3	T_RAS	T_RAS timing parameter	R/W	111
		Basic unit, 4*clock cycle		
		"000" means 1 unit (4 clock cycle)		
2-0	T_RFC	T_RFC timing parameter for refresh interval	R/W	111
		Basic unit, 4*clock cycle		
		"000" means 1 unit (4 clock cycle)		
Byte Ad	dress 1-0	·	<u>.</u>	•
				-

Bit	Bit Name	Description	R/W	InitVal
7-0	OPCODE	The OPCODE of first instruction in big endian format.	R/W	X


Timing Diagram

The SDRAM timing:



....The write access timing of flash memory:

The read access timing of flash memory:

9. Ethernet Network Interface Controller

There are two 10/100M Ethernet NIC modules embedded in RTL8186. The Ethernet device has bus master capability and moves packets between SDRAM and the Ethernet controller through a DMA mechanism, lessening the CPU loading and giving better performance. Both the Ethernet controller support the following feature:

- I Supports 10/100 Full/Half (collision) Flow control (control frame transmission).
- I Supports IEEE802.1P/Q VLAN handling.
- I TCP, UDP, IP receiving checksum offload
- I Hardware Priority queue with one receive descriptor ring and two transmit descriptor rings.
- Unicast Address Recognition.

The Ethernet controller supports up to 64 consecutive descriptors for transmit and receive separately. Besides, it includes 3 descriptor rings, one high priority transmit ring, one normal priority transmit ring and the other is for receive descriptor ring. Each descriptor ring may consist of up to 64 consecutive descriptors, and each descriptor is consisted of 4 consecutive words. The starting address of each descriptor group should be 256-byte alignment. Software must pre-allocate enough buffers and configures all descriptor rings before transmitting and/or receiving packets. Descriptors can be chained for both transmitting and receiving packet. Any transmit buffer pointed by one of transmit descriptor should be at least 4 bytes. And for transmit packet padding; the Ethernet controller will automatically pad any packet less than 64 bytes (including 4 bytes CRC) to 64-byte long (including 4-byte CRC) before transmitting that packet into network medium.

Also the Ethernet controller offloads the calculation of IP/TCP/UDP checksum at the receiving path FIFO. The packet parser insides the controller can identify:

- I 802.3 Ethernet packets
- I RFC894 Ethernet II packets
- I PPPOE packets
- I VLAN packets

Inside the IP payload, the packet parser determines whether the packet is TCP/UDP or neither of the two. For TCP/UDP checksum, the IP pseudo header must be included in the checksum one's complement summation. The Ethernet NIC also identifies fragmented packets and handles TCP/UDP checksum by performing one's complement summation per IP packet, recording the sum/packet in the last descriptor and reporting fragmentation on status descriptor. For non-fragmented packets, Ethernet NIC module checks the calculated TCP/UDP checksum and reports the status in the descriptor.

Descriptor Data Structure

The descriptors in the queuing rings serve to exchange messages between CPU and the Ethernet Controller. A transmit descriptor changes form before and after transmit. Also the receive descriptor changes form before and after receive. The descriptor data structures are illustrated as follow:

n Normal Tx Descriptor Format (before transmitting, OWN=1, Tx command mode 1)

31	30	29	28	27 26 25 24	23	22	21 20	0 19	18	17	16	15 14	1	13 1	2 11	10	9	8	7	6	5	4	3	2	1	0	
О	Е	F	L		C																					(Offset 0
W			S		R				R	RSV	D						Dat	a_L	eng	gth ((12)	bit	s)				
N	R			(4 bits)	C				(1	1 bi	ts)																
=																											
1																											
																										(Offset 4
	7	ΓX_{-}	_Bt	JFFER_ADDI	RE	SS (32 t	oits)																			
											T						VL	ΑN								(Offset 8
				RSVD							A			V	IDI	Ĺ			PF	RIO	(2	1	/ID	Η		
				(15 bits	s)						G										I	7					
											C]	[
																										(Offset 12
	F	RSV	/D																								

Offset#	Bit#	Symbol	Description
0	31	OWN	When set, indicates that the descriptor is owned by NIC, and the data relative to this descriptor is ready to be transmitted. When cleared, indicates that the descriptor is owned by host system. NIC clears this bit when the relative buffer data is transmitted. In this case, OWN=1.
			Value Meaning
			0 Descriptor own by host system
			1 Descriptor own by NIC
0	30	EOR	End of descriptor Ring. When set, indicates that this is the last descriptor in descriptor ring. When NIC's internal transmit pointer reaches here, the pointer will return to the first descriptor of the descriptor ring after transmitting the data associates with this descriptor.
0	29	FS	First segment descriptor. When set, indicates that this is the first descriptor of a segmented Tx packet, and this descriptor is pointing to the first segment of the packet.
0	28	LS	Last segment descriptor. When set, indicates that this is the last descriptor of a segmented Tx packet, and this descriptor is pointing to the last segment of the packet.
0	27-24	RSVD	Reserved bits.

w 0 v.Data	aShe 23 4U.co	CRC	If this bit	is set then append CRC at the end of Ethernet frame.
			Value	Meaning
			0	No CRC appended
			1	CRC appended
0	22-12	RSVD	Reserved	bits.
0	11-0	Frame_Length		frame length. This field indicates the length in TX buffer page, in e transmitted
4	31-0	TxBuff	Physical 3	32-bit address of transmit buffer.
8	31-17	RSVD	Reserved	bits.
8	16	TAGC	VLAN ta	g control bit. 1: Enable. 0: Disable.
			Value	Meaning
			0	Packet remains unchanged when transmitting. I.e., the packet transmitted is the same as upper layer passed it down.
			1	Insert TAG 0x8100 (Ethernet encoded tag protocol ID) after source address, indicating that this is a IEEE 802.1Q VLAN packet. And 2 bytes are inserted after the TAG that copied from VLAN_TAG field in Tx descriptor.
8	15-0	VLAN_TAG	priority, c IEEE 802 VIDH: TI VIDL: TI PRIO: 3-1	the VLAN_TAG contains information, from upper layer, of user anoethernetal format indicator, and VLAN ID. Please refer to 2.1Q for more VLAN tag information. The high 4 bits of a 12-bit VLAN ID. The low 8 bits
12	31-0	RSVD	Reserved	

n Tx Status Descriptor (after transmitting, OWN=0, Tx status mode)

O E F L W O S S S RSVD (16bits)	18 17 16 15 14 13 12	11 10 9 8 7 6 5 4 3 2 1 (Data_Length (12 bits)	Offset 0
0	FER_ADDRESS (32	2 bits)	Offset 4
RSVD (15 bits)	T A VIDL G C	VLAN_TAG PRIO C VIDH F I	Offset 8
	RSVD	1 1	Offset 12

C	Offset#	Bit#	Symbol	Description
0		31	OWN	When set, indicates that the descriptor is owned by NIC. When clear

ww.Data	aSheet4U.co	om	indicates that the descriptor is owned by host system. NIC clears this bit when the relative buffer data is already transmitted. In this case, OWN=0.
			Value Meaning
			0 Descriptor own by host system
			1 Descriptor own by NIC
0	30	EOR	End of descriptor Ring. When set, indicates that this is the last descriptor in
			descriptor ring. When NIC's internal transmit pointer reaches here, the
			pointer will return to the first descriptor of the descriptor ring after
			transmitting the data associates with this descriptor.
0	29	FS	First segment descriptor. When set, indicates that this is the first descriptor
			of a segmented Tx packet, and this descriptor is pointing to the first
			segment of the packet.
0	28	LS	Last segment descriptor. When set, indicates that this is the last descriptor
			of a segmented Tx packet, and this descriptor is pointing to the last segment
			of the packet.
0	27-12	RSVD	Reserved.
0	11-0	Data_Length	Transmit data length. This field indicates the length in TX buffer page, in
			byte, transmitted
4	31-0	TxBuff	The physical 32-bit address of transmit buffer.
8	31-17	RSVD	Reserved bits.
8	16	TAGC	Record of previous VLAN information:
			VLAN tag control bit.
			1: Tag was inserted.
	4= 0		0: Tag was not inserted
8	15-0	VLAN_TAG	Record of previous VLAN information:
			The 2-byte VLAN_TAG contains information, from upper layer, of user
			priority, canoethernetal format indicator, and VLAN ID. Please refer to
			IEEE 802.1Q for more VLAN tag information.
			VIDH: The high 4 bits of a 12-bit VLAN ID.
			VIDL: The low 8 bits of a 12-bit VLAN ID.
			PRIO: 3-bit 8-level priority. CFI: Canoethernetal Format Indicator.
12	31-0	RSVD	Reserved
12	31-0	KO A D	INESEI VEU

n Rx Command Descriptor (OWN=1)

O W	30 E O R	28	27	26	2	5	24	23	21 RS (18	V	'D		18	17	16	15	14	13	12	11	10	9	8 Buf	7 fer	6 Siz	5 ze (1	4 12 b	its)		1 (Offset 0
1]	RX	 {_I	ЗU	JFF (3	ER 2 b			RE	ESS	<u> </u>										Offset 8
															F	RSV	/D														Offset 8

WV	ww.DataSheet4U.com RSVD	Offset 12

Offset#	Bit#	Symbol	Description										
0	31	OWN	When set, indicates that the descriptor is owned by NIC, and is ready to receive packet. The OWN bit is set by driver after having pre-allocated buffer at initialization, or the host has released the buffer to driver. In this case, OWN=1.										
			Value Meaning										
			0 Descriptor own by host system										
			1 Descriptor own by NIC										
0	30	EOR	End of Rx descriptor Ring. Set to 1 indicates that this descriptor is the last descriptor of Rx descriptor ring. Once NIC's internal receive descriptor pointer reaches here, it will return to the first descriptor of Rx descriptor ring after this descriptor is used by packet reception.										
0	29-12	RSVD	Reserved bits.										
0	11-0	Buffer_Size	This field indicate the receive buffer size in bytes. The NIC purges all data after 4K bytes if the packet is larger than 4K-byte long.										
4	31-0	Rx_Buff_addr	The 32-bit physical address of receive buffer.										
8	31-0	RSVD	Reserved bits.										
12	31-0	RSVD	Reserved bits.										

n Rx Status Descriptor (OWN=0)

																																	_	
31	_	29	28		26					21	20		_			15	14				10	9			7_	6	5	4	3		1	. (
O	Е	F	L	F	M	P	В	P	Е	L		R	C	P	P	I	U	T	I	R			D	ata	ı_L	eng	gth	(1)	l b	its)			ľ	Offset 0
W	O	S	S	Α	Α	Α	Α	P	8	P					I		D	C	P	S														
N	R			Ε	R	M	R	P	0	K	S	N	C	D	D	F	P	P	S	V														
=								O	2.	Т		T		1	0		F	F	Ε	D														
0								Е	3										G															
	<u> </u>																																-1	Offset 8
			RX_BUFFER_ADDRESS																Oliset															
		(32 bits)																																
		(32 DIIS)																																
	_						~								<u> </u>																		_	
О	F					R	SV	D (13	bit	s)				- [Γ	VLAN_TAG												Offset 8					
F	R															ΑŢ	VIDL (8 bits) PRIO C VIDH									Н								
F	Α														1	V									(3	bi	ts)	F		(4)	bit	s)		
S	G														4	A									`			I		`		_		
T																																		
					F	RSV	VD	(16	5 bi	its)									PA	\R7	ΊAΙ	[_(СН	E	CKS	SU	M	(16	bi	ts)				Offset 12
		RSVD (16 bits) PAI																																

Offset#	Bit#	Symbol	Description
0	31		When set, indicates that the descriptor is owned by NIC. When cleared, indicates that the descriptor is owned by host system. NIC clears this bit
			when NIC has filled up this Rx buffer with a packet or part of a packet. In

			Value Meaning
			0 Descriptor own by host system
			1 Descriptor own by NIC
)	30	EOR	End of Rx descriptor Ring. Set to 1 indicates that this descriptor is the last descriptor of Rx descriptor ring. Once NIC's internal receive descriptor pointer reaches here, it will return to the first descriptor of Rx descriptor
)	29	FS	ring after this descriptor is used by packet reception. First segment descriptor. When set, indicates that this is the first descriptor of a received packet, and this descriptor is pointing to the first segment of the packet.
)	28	LS	Last segment descriptor. When set, indicates that this is the last descriptor of a received packet, and this descriptor is pointing to the last segment of the packet.
)	27	FAE	Frame Alignment Error. When set, indicates a frame alignment error has occurred on the received packet. The FAE packet can be received only when AER bit at RCR register is set.
)	26	MAR	Multicast Address packet Received. When set, indicates that a multicast packet is received
)	25	PAM	Physical Address Matched. When set, indicates that the destination address of this Rx packet matches to the value in Ethernet's ID registers. Use to address packets to gateway.
)	24	BAR	Broadcast Address Received. When set, indicates that a broadcast packet received. BAR and MAR will not be set simultaneously.
)	23	PPPOE	Identifies if current packet is PPPOE packet
)	22	E802.3	Identifies if current packet is of Ethernet 802.3 format
)	21	RWT	Receive Watchdog Timer expired. When set, indicates that the received packet length exceeds 4096 bytes, the receive watchdog timer will expire and stop receive engine.
)	20	RES	Receive Error Summary. When set, indicates at least one of the following errors occurred: CRC, RUNT, RWT, FAE. This bit is valid only when LS (Last segment bit) is set
)	19	RUNT	Runt packet. When set, indicates that the received packet length is smaller than 64 bytes. RUNT packet can be received only when AR bit at RCR register is set.
)	18	CRC	CRC error. When set, indicates that a CRC error has occurred on the received packet. A CRC packet can be received only when AER bit at RC register is set.
0	17, 16	PID1, PID0	Protocol ID1, Protocol ID0: These 2 bits indicate the protocol type of the packet received. PID1 PID0 Non-IP 0 TCP/IP 0 UDP/IP 1 IP 1
0	15	IPF	When set, indicates IP checksum failure.
)	14	UDPF	When set, indicates UDP checksum failure.
)	13	TCPF	When set, indicates TCP checksum failure.
)	12	RSVD	Reserved
0	11-0	Data_Length	This indicates the number of bytes of data on the page pointed by the descriptor. The content of the page should start with no reserve at the star of the page (unless offset bit is set)
4	31-0	RxBuff	The 32-bit physical address of receive buffer.

8 v.DataSh	31 4U.cor	OFFST	Defines if a 2-byte offset exists on this page before valid data.
8	30	FRAG	Indicates the fragmentation flag is set
8	29-17	RSVD	Reserved bits.
8	16	TAVA	Tag Available. When set, the received packet is an IEEE802.1Q VLAN TAG (0x8100) available packet.
8	15-0	VLAN_TAG	If the packet 's TAG (EtherType field) is 0x8100, The NIC extracts four bytes from after source ID, sets TAVA bit to1, and moves the TAG value to this field in Rx descriptor. VIDH: The high 4 bits of a 12-bit VLAN ID. VIDL: The low 8 bits of a 12-bit VLAN ID. PRIO: 3-bit 8-level priority. CFI: Canoethernetal Format Indicator.
12	31-0	RSVD	Reserved bits.
12	15-0	PARTIAL_CHEC KSUM	In the case of IP packet with no fragmentation: This field is the non-inverted accumulate sum for this IP PDU including Pseudo Header. Result should be 0xFFFF if there are no errors. In the case of IP fragmentation: This field is the non-inverted accumulate sum for this IP PDU excluding Pseudo Header. Summing all partial sums of packets crossing multiple IP PDU's and performing One's complement' inversion is done by software). If the TCP/UDP packet is fragment and carried over 2 more IP packets, only the accumulate sum and not the pseudo header is included in the summation. This value is valid in descriptor with LS=1.

Register Summary

Virtual Address	Size (byte)	Name	Description	Access
0xBD20_0000	6	ETH0_IDR	ID Register. The ID register is only permitted	R/W
			to write by 4-byte access. Read access can be	
			byte, word, or double word access. The initial	
			value is autoloaded from Flash.	
0xBD20_0008	8	ETH0_MAR	Multicast Register. The MAR register is only	R/W
			permitted to write by 4-byte access. Read	
			access can be byte, word, or double word	
			access. Driver is responsible for initializing	
			these registers. The MAR defines 64 bits that	
			is a bit wise index of the multicast function	
			of multicast addresses. The hash function of	
			multicast address is the upper 6 MSB's of the	
			CRC32 of the address (destination). The	
			index then is the numerical representation of	
			those 6 bits in hex format.	
0xBD20_0010	2	ETH0_TXOKCNT	16-bit counter of Tx DMA Ok packets.	R/W
0xBD20_0012	2	ETH0_RXOKCNT	16-bit counter of Rx Ok packets.	R/W
0xBD20_0014	2	ETH0_TXERR	16-bit packet counter of Tx errors including	R/W
			Tx abort, carrier lost, Tx underrun (should be	
			happened only on jumbo frames), and out of	
			window collision.	
0xBD20_0016	2	ETH0_RXERR	16-bit packet counter of Rx errors including	R/W
			CRC error packets (should be larger than 8	
			bytes) and missed packets.	
0xBD20_0018	2	ETH0_MISSPKT	16-bit counter of missed packets resulting	R/W
			from Rx FIFO full.	

0xBD20 <u>-</u> 001A	2	ETH0_FAE	16-bit counter of Frame Alignment Error packets.	R/W
0xBD20_001C	2	ETH0_TX1COL	16-bit counter of those Tx Ok packets with only 1 collision happened before Tx Ok.	R/W
0xBD20_001E	2	ETH0_TXMCOL	16-bit counter of those Tx Ok packets with more than 1, and less than 16 collisions happened before Tx Ok.	R/W
0xBD20_0020	2	ETH0_RXOKPHY	16-bit counter of all Rx Ok packets with physical address matched destination ID.	R/W
0xBD20_0022	2	ETH0_RXOKBRD	16-bit counter of all Rx Ok packets with broadcast destination ID.	R/W
0xBD20_0024	2	ETH0_RXOKMUL	16-bit counter of all Rx Ok packets with multicast destination ID.	R/W
0xBD20_0026	2	ETH0_TXABT	16-bit counter of Tx abort packets.	R/W
0xBD20_0028	2	ETH0_TXUNDRN	16-bit counter of Tx underrun and discarded packets.	R/W
0xBD20_0034	4	ETH0_TRSR	Tx/Rx Status Register.	R
0xBD20_003B	1	ETH0_CR	Command Register.	R/W
0xBD20_003C	2	ETH0_IMR	Interrupt Mask Register.	R/W
0xBD20_003E	2	ETH0_ISR	Interrupt Status Register.	R/W
0xBD20_0040	4	ETH0_TCR	Transmit (Tx) Configuration Register.	R/W
0xBD20_0044	4	ETH0_RCR	Receive (Rx) Configuration Register.	R/W
0xBD20_0058	4	ETH0_MSR	Media Status Register.	R/W
0xBD20_005C	4	ETH0_MIIAR	MII Access Register.	R/W
0xBD20_1300	4	ETH0_TXFDP1	Tx First Descriptor Pointer (FDP) for high priority queue.	R/W
0xBD20_1304	2	ETH0_TXCDO1	Tx Current Descriptor Offset (CDO) for high priority queue.	R/W
0xBD20_1380	4	ETH0_TXFDP2	Tx First Descriptor Pointer (FDP) for low priority queue.	R/W
0xBD20_1384	2	ETH0_TXCDO2	Tx Current Descriptor Offset (CDO) for low priority queue.	R/W
0xBD20_13F0	4	ETH0_RXFDP	Rx First Descriptor Pointer (FDP).	R/W
0xBD20_13F4	2	ETH0_CDO	Rx Current Descriptor Offset (CDO).	R/W
0xBD20_13F6	1	ETH0_RXRINGSIZE	Rx Ring Size (in number of Descriptors).	R/W
0xBD20_1430	2	ETH0_RXCPUDESC	This is the descriptor number which the CPU has finished processing and returned to IO. CPU needs to update this.	R/W
0xBD20_1432	2	ETH0_ RXPSEDESC	Specifies the difference between ETHO_ RXCPUDESC and the descriptor number currently in use by NIC in which flow control will be assert.	R/W
0xBD20_1434	4	ETH0_ IOCMD	ETHER_IO_CMD.	R/W

Virtual Address	Size (byte)	Name	Description	Access
0xBD30_0000	6	ETH1_IDR	ID Register. The ID register is only permitted	R/W
			to write by 4-byte access. Read access can be	
			byte, word, or double word access. The initial	
			value is autoloaded from Flash.	

0xBD30 <u>0008</u>	0.81	ETH1_MAR	Multicast Register. The MAR register is only	R/W
			permitted to write by 4-byte access. Read	
			access can be byte, word, or double word	
			access. Driver is responsible for initializing	
			these registers. The MAR defines 64 bits that	
			is a bit wise index of the multicast function	
			of multicast addresses. The hash function of	
			multicast address is the upper 6 MSB's of the	
			CRC32 of the address (destination). The	
			index then is the numerical representation of	
			those 6 bits in hex format.	
0xBD30_0010	2	ETH1_TXOKCNT	16-bit counter of Tx DMA Ok packets.	R/W
0xBD30_0012	2	ETH1_RXOKCNT	16-bit counter of Rx Ok packets.	R/W
0xBD30_0014	2	ETH1_TXERR	16-bit packet counter of Tx errors including	R/W
			Tx abort, carrier lost, Tx underrun (should be	
			happened only on jumbo frames), and out of	
			window collision.	
0xBD30_0016	2	ETH1_RXERR	16-bit packet counter of Rx errors including	R/W
			CRC error packets (should be larger than 8	
			bytes) and missed packets.	
0xBD30_0018	2	ETH1_MISSPKT	16-bit counter of missed packets resulting	R/W
0.NBB30_0010	ľ	ETTT_MOST IXT	from Rx FIFO full.	10 ,,
0xBD30_001A	2	ETH1_FAE	16-bit counter of Frame Alignment Error	R/W
0XBD30_001A	2	EITI_IAE	<u> </u>	IN/ W
0 DD20 001G	2	ETHI TWICOL	packets.	D /XX/
0xBD30_001C	2	ETH1_TX1COL	16-bit counter of those Tx Ok packets with	R/W
			only 1 collision happened before Tx Ok.	
0xBD30_001E	2	ETH1_TXMCOL	16-bit counter of those Tx Ok packets with	R/W
			more than 1, and less than 16 collisions	
			happened before Tx Ok.	
0xBD30_0020	2	ETH1_RXOKPHY	16-bit counter of all Rx Ok packets with	R/W
_		_	physical address matched destination ID.	
0xBD30_0022	2	ETH1_RXOKBRD	16-bit counter of all Rx Ok packets with	R/W
0ABD30_0022	ľ	ETITI_RAGRERE	broadcast destination ID.	10 **
0xBD30_0024	2	ETH1_RXOKMUL		R/W
UXBD3U_0024	2	EITI_KAUKWUL	16-bit counter of all Rx Ok packets with	K/ W
0 PP 20 002 c	2	EMILL MY A DE	multicast destination ID.	D WY
0xBD30_0026	2	ETH1_TXABT	16-bit counter of Tx abort packets.	R/W
0xBD30_0028	2	ETH1_TXUNDRN	16-bit counter of Tx underrun and discarded	R/W
			packets.	
0xBD30_0034	4	ETH1_TRSR	Tx/Rx Status Register.	R
0xBD30_003B	1	ETH1_CR	Command Register.	R/W
0xBD30_003C	2	ETH1_IMR	Interrupt Mask Register.	R/W
0xBD30_003E	2	ETH1_ISR	Interrupt Status Register.	R/W
0xBD30_0040	4	ETH1_TCR	Transmit (Tx) Configuration Register.	R/W
0xBD30_0040 0xBD30_0044	4	ETH1_ICK ETH1_RCR		R/W
	<u> </u>		Receive (Rx) Configuration Register.	
0xBD30_0058	4	ETH1_MSR	Media Status Register.	R/W
0xBD30_005C	4	ETH1_MIIAR	MII Access Register.	R/W
0xBD30_1300	4	ETH1_TXFDP1	Tx First Descriptor Pointer (FDP) for high	R/W
			priority queue.	
0xBD30_1304	2	ETH1_TXCDO1	Tx Current Descriptor Offset (CDO) for high	R/W
_			priority queue.	
0xBD30_1380	4	ETH1_TXFDP2	Tx First Descriptor Pointer (FDP) for low	R/W
0	Ι.		priority queue.	
0vDD20 1204	2	ETU1 TVCDO1	Tx Current Descriptor Offset (CDO) for low	R/W
0xBD30_1384	2	ETH1_TXCDO2		IX/ W
0 DD 00 1075	1.	TOTAL DAVES	priority queue.	D 477
0xBD30_13F0	4	ETH1_RXFDP	Rx First Descriptor Pointer (FDP).	R/W
0xBD30_13F4	2	ETH1_CDO	Rx Current Descriptor Offset (CDO).	R/W
0xBD30_13F6	1	ETH1_RXRINGSIZE	Rx Ring Size (in number of Descriptors).	R/W

0xBD30_1430	2		This is the descriptor number which the CPU has finished processing and returned to IO. CPU needs to update this.	R/W
0xBD30_1432	2	ETH1_RXPSEDESC	1	R/W
0xBD30_1434	4	ETH1_IOCMD	ETHER_IO_CMD.	R/W

 0xBD20_0000
 Ethernet0 ID Register (ETH0_IDR)

 Extremet1 ID Register (ETH1_IDR)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

 ID3
 ID2
 ID1
 ID0

 0xBD20_0004
 cont. of Ethernet0 ID Register (ETH0_IDR)

 0xBD30_0004
 cont. of Ethernet1 ID Register (ETH1_IDR)

 31
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 ID5
 ID4
 ID4

Reset: 0x0

Bit	Bit Name	Description	R/W	InitVal
7-0	ID0	ID Register. The ID register0-5 are only permitted	R/W	?
15-8	ID1	to write by 4-byte access. Read access can be byte,		
23-16	ID2	word, or double word access. The initial value is		
31-0	ID3	autoloaded from Flash.		
7-0	ID4			
15-8	ID5			

 0xBD20_0008
 Ethernet0 Multicast Register (ETH0_MAR)

 0xBD30_0008
 Ethernet1 Multicast Register (ETH1_MAR)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

 MAR3
 MAR2
 MAR1
 MAR0

 0xBD20_000C
 cont. of Ethernet0 Multicast Register (ETH0_MAR)

 0xBD30_000C
 cont. of Ethernet1 Multicast Register (ETH1_MAR)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 0

 MAR7
 MAR6
 MAR5
 MAR4

Reset: 0x?

Bit	Bit Name	Description	R/W	InitVal
7-0	MAR0	Multicast Register. The MAR register0-7 is only	R/W	?
15-8	MAR1	permitted to write by 4-byte access. Read access		
23-16	MAR2	can be byte, word, or double word access. Driver		
31-0	MAR3	is responsible for initializing these registers. The		
7-0	MAR4	MAR7-0 defined a 64-bits, which is a bit wise		
15-8	MAR5	index of the multicast function of multicast		
23-16	MAR6	addresses. The hash function of multicast		
31-24	MAR7	address is the upper 6 MSB's of the CRC32 of the		
		address (destination). The index then is the		
		numerical representation of those 6 bits in hex		
		format.		

0xBD20_0010	Ethernet0 TX DMA OK Counter Register (ETH0_TXOKCNT)
0xBD30_0010	Ethernet1 TX DMA OK Counter Register (ETH1_TXOKCNT)
31	16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	TxOkCnt
Pacat: 0v00	

Reset: 0x00

В	Bit	Bit Name	Description	R/W	InitVal
1.	5-0	TxOkCnt	16-bit counter of Tx DMA Ok packets. Rolls over	R/W	0
			automatically. Write to clear.	Ī	

0xBD20_0012	Ethernet0 RX DMA OK Counter Register (ETH0_RXOKCNT
0xBD30_0012	Ethernet1 RX DMA OK Counter Register (ETH1_RXOKCNT
31	16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	RxOkCnt

Reset: 0x00

Bit	Bit Name	Description	R/W	InitVal
15-0	RxOkCnt	16-bit counter of Rx DMA Ok packets. Rolls over	R/W	0
		automatically. Write to clear.		

Ethernet0 TX Error Counter Register (ETH0_TXERR)			
Ethernet1 TX Error Counter Register (ETH1_TXERR)			
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			
TxErrCnt			

Reset: 0x00

Bit	Bit Name	Description	R/W	InitVal
15-0	TxErrCnt	16-bit counter of Tx error packets. Rolls over	R/W	0
		automatically. Write to clear.		

0xBD20_0016	I	Ethe	rne	t0 R	X E	rro	r C	oun	ter :	Reg	gist	er (ET	H0_	RX	ER	.R)
0xBD30_0016	I	Ethe	rne	t1 R	X E	rro	r C	oun	ter	Reg	gist	er (ET	H1_	_RX	ER	.R)
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								R	xErr	Cn	t						

Reset: 0x01

Bit	Bit Name	Description	R/W	InitVal
15-0	RxErrCnt	16-bit counter of Rx error packets. Rolls over	R/W	1
		automatically. Write to clear.		

0xBD20_0018	Ethernet0 Miss Packet Counter Register (ETH0_MISSPKT)
0xBD30_0018	Ethernet1 Miss Packet Counter Register (ETH1_MISSPKT)
31	16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	MissPkt

Reset: 0x00

Bit	Bit Name	Description	R/W	InitVal
15-0	MissPkt	16-bit counter missed packets. Rolls over	R/W	0
		automatically. Write to clear.		

www.DataSheet4U.com

	20_001A 80_001A) FAE Co l FAE Co							
31		16 15 14 13 1	2 11			6	5	4 3	3 2	2 1	(
				FA	ECnt	t					
Reset:	0x00										
Bit	Bit Name	Description	R/W								
15-0	FAECnt	16-bit counter of Fragment Alignment Error packets. Rolls over automatically. Write to clear.	R/W	0							
	20_001C	Ethernet0 Tx 1 st Col									
)XBD3 31	30_001C	Ethernet1 Tx 1 st Col			r Keg 8 7	1ste		4 3			OL (
51		10 13 14 15 1	<u> </u>		o [/ c1Col		13 1	4 3) 2	2 1	
Reset:	0x00				_						
Bit	Bit Name	Description	R/W								
	T-1C-1		R/W	0							
0xBD2	Tx1Col 20_001E 30_001E	16-bit counter of TxCol packets. Rolls over automatically. Write to clear. This only records which have entered just one collision before Tx OK. Ethernet0 Tx Multi Co Ethernet1 Tx Multi Co	ollision ollision	n Counte	er Re g 8 7	giste 6	er (E		1_T	XM	C
)xBD2)xBD3	20_001E	automatically. Write to clear. This only records which have entered just one collision before Tx OK. Ethernet0 Tx Multi Co Ethernet1 Tx Multi Co	ollision ollision	n Counte	er Reg	giste 6	er (E	TH1	1_T	XM	C
0xBD2 0xBD3	20_001E 30_001E	automatically. Write to clear. This only records which have entered just one collision before Tx OK. Ethernet0 Tx Multi Co Ethernet1 Tx Multi Co	ollision ollision	n Counte	er Re g 8 7	giste 6	er (E	TH1	1_T	XM	CC
0xBD2 0xBD3	20_001E 30_001E	automatically. Write to clear. This only records which have entered just one collision before Tx OK. Ethernet0 Tx Multi Co Ethernet1 Tx Multi Co 16 15 14 13 11	ollision 2 11	n Counte n Counte 10 9 3 Tx	er Reg 8 7 MCol	giste 6	er (E	TH1	1_T	XM	CC
0xBD2	20_001E 30_001E	automatically. Write to clear. This only records which have entered just one collision before Tx OK. Ethernet0 Tx Multi Co Ethernet1 Tx Multi Co 16 15 14 13 1	pollision 2 11 R/W R/W	n Counte n Counte 10 9 17 17 17 17 17 17 17	er Reg 8 7 MCol	giste 6	er (E	TH1	1_T	XM	CC
0xBD2 0xBD3 31 Reset: Bit 15-0	0x00 Bit Name TxMCol	automatically. Write to clear. This only records which have entered just one collision before Tx OK. Ethernet0 Tx Multi Co Ethernet1 Tx Multi Co 16 15 14 13 1 Description 16-bit counter of Tx Multi Collision packets. Rolls over automatically. Write to clear. This keeps track of those packets with less than 16 collisions (or the configured retry count) before Tx Ok. Ethernet0 Rx Ok Physical addr m	pollision 2 11 R/W R/W	Tx InitVal 0	er Reg	giste 6 1	er (E 5	ETH1 ETH	1_T 3 2	RXP	PHY
0xBD2 0xBD3 31 Reset: Bit 15-0	0x00 Bit Name TxMCol	automatically. Write to clear. This only records which have entered just one collision before Tx OK. Ethernet0 Tx Multi Co Ethernet1 Tx Multi Co 16 15 14 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pollision 2 11 R/W R/W	Tx InitVal 0	er Reg	gisto 6 l	ter (E	TH114 3	1_T 3 2 	RXP	PHY
0xBD2 0xBD3 31 Reset: Bit 15-0	0x00 Bit Name TxMCol	automatically. Write to clear. This only records which have entered just one collision before Tx OK. Ethernet0 Tx Multi Co Ethernet1 Tx Multi Co 16 15 14 13 1 Description 16-bit counter of Tx Multi Collision packets. Rolls over automatically. Write to clear. This keeps track of those packets with less than 16 collisions (or the configured retry count) before Tx Ok. Ethernet0 Rx Ok Physical addr m	pollision 2 11 R/W R/W	Tx InitVal 0	er Reger Reg	gisto 6 1 	er (E 5	TH114 3	1_T 3 2 	RXP	PHY
0xBD2 0xBD3 31 Reset: Bit 15-0 0xBD2 0xBD3	0x00 Bit Name TxMCol	automatically. Write to clear. This only records which have entered just one collision before Tx OK. Ethernet0 Tx Multi Co Ethernet1 Tx Multi Co 16 15 14 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pollision 2 11 R/W R/W	InitVal Counted Count	er Reger Reg	gisto 6 1 	ter (E	TH114 3	1_T 3 2 	RXP	e Hy
0xBD2 0xBD3 31 Reset: Bit 15-0	0x00 Bit Name TxMCol	automatically. Write to clear. This only records which have entered just one collision before Tx OK. Ethernet0 Tx Multi Co Ethernet1 Tx Multi Co 16 15 14 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pollision 2 11 R/W R/W	InitVal Counted Count	er Reger Reg	gisto 6 1 	ter (E	TH114 3	1_T 3 2 	RXP	PHY

Ethernet0 Rx Ok Broadcast addr matched Counter Register (ETH0_RXBRD)

Ethernet1 Rx Ok Broadcast addr matched Counter Register (ETH1_RXBRD)

16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

 $0xBD20_0022$

 $0xBD30_0022$

محمد مرائح مياان	KEILIK						RTL81
w.DataSheet4U.com				RxBro	lAddM		
Reset: 0x00							
Bit Bit Name	Description		R/W	InitVal	1		
15-0 RxBrdAddM			R/W	0			
0xBD20_0024 0xBD30_0024	Ethernet0 Rx Ok Mu Ethernet1 Rx Ok Mu	l <u>ticast addr n</u>	natche	d Counte	r Regist	ter (ETH1	_RXMUL
31	16	15 14 13 1	12 11		7 6 AddM	5 4 3	2 1 0
Reset: 0x00							
Bit Name	Description		R/W	InitVal			
15-0 RxMulAddM	16-bit counter of Rx Ok packets with destination address. Rolls over auton Write to clear.		R/W	0			
0xBD20_0026 0xBD30_0026		Ethernet0 T Ethernet1 T					
31	16	15 14 13 1				5 4 3	2 1 0
51	10	13 14 13 1	12 11		Abt	J 4 J	2 1 0
D 4 0 00							
Reset: 0x00 Bit Bit Name	Description		R/W	InitVal	1		
15-0 TxAbt	16-bit counter of Tx aborted packets. automatically. Write to clear. This ac over collision, underrun, LNK failure	counts for	R/W	0			
0xBD20_0028 0xBD30_0028 31	Ether	net0 Tx Unde net1 Tx Unde 15 14 13 1	errun (Counter I 10 9 8	Register		
Reset: 0x00							
Bit Name	Description		R/W	InitVal			
15-0 TxUndrn	16-bit counter of Tx Underrun packe automatically. Write to clear. (Only jumbo frame which may not be allow RTL8186)	possible for	R/W	0			
0xBD20_0034 0xBD30_0034 31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 (Reserved)	Ethe	rnet1 7	Γx/Rx Sta	tus Reg		UXS
Reset: 0x0000_0000							

Bit at	Bit Name	Description	R/W	InitVal
3	TOK	Transmit OK: Set to 1 indicates that the	R	0
		transmission of a packet was completed		
		successfully and no transmit underrun occurs.		
2	TUN	Transmit FIFO Underrun: Set to 1 if the Tx FIFO	R	0
		was exhausted during the transmission of a packet.		
		The NIC can re-transfer data if the Tx FIFO		
		underruns and can also transmit the packet to the		
		wire successfully even though the Tx FIFO		
		underruns. That is, when TSD <tun>=1,</tun>		
		TSD < TOK >= 0 and $ISR < TOK >= 1$ (or		
		ISR <ter>=1). Handle underrun transmit with</ter>		
		care.		
1	RXFE	Rx FIFO is Empty.	R	0
0	RSVD	Reserved.	-	-

0xBD20_003B 0xBD30_003B

Ethernet0 Command Register (ETH0_CR)
Ethernet1 Command Register (ETH1_CR)

0ADD30_003D	Ethernett Com	пап	u	ixeg.	isici	(121	111	r_,	/ I \
31	8	7	6	5	4	3 2	1	1	0
		(Re	eserv	ved)	I	₹ :	R	R
						2		X	S
						1	V	C	T
]	_	S	
						1	4	Ε	
						1	1		

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
2	RXVLAN	Receive VLAN de-tagging enable. 1: Enable. 0:	R/W	0
		Disable.		
1	RXCSE	Receive checksum offload enable. 1: Enable. 0:	R/W	0
		Disable.		
0	RST	Reset: Setting to 1 to force the NIC enters a	R/W	0
		software reset state which disables the		
		transmitter and receiver, reinitializes the FIFOs,		
		triggers interrupt Swint for RISC to reset the		
		system buffer pointer to the initial value Tx/Rx		
		FDP. The values of IDR0-5 and MAR0-7 will		
		have no changes. This bit is 1 during the reset		
		operation, and is cleared to 0 by the NIC when		
		the reset operation is complete.		

0xBD20_003C 0xBD30_003C Ethernet0 Interrupt Mask Register (ETH0_IMR) Ethernet1 Interrupt Mask Register (ETH1_IMR)

0XDD30_003C	Emernen m	terr	սբւ	IVI	ISK	Νeį	zisu	SI (1	711	TT_	TIAT	K)
31 16	15 14 13 12 11	10	9	8	7	6	5	4	3	2	1	0
	(Reserved)	S	T	L	T	T	R	R	R	R	R	R
		W	D	N	Е	О	D	X	S	X	S	O
		I	U	K	R	K	U	F	V	R	V	K
		n		C				U	D	U	D	
		t		Н				L		N		
				G				L		T		

Bit	Bit Name	Description	R/W	InitVal
10	SWInt	1: enable interrupt	R/W	0
		0: disable interrupt		
9	TDU	1: enable interrupt	R/W	0

w.DataS	Sheet4U.com	0: disable interrupt		
8	LNKCHG	1: enable interrupt	R/W	0
		0: disable interrupt		
7	TER	1: enable interrupt	R/W	0
		0: disable interrupt		
6	TOK	1: enable interrupt	R/W	0
		0: disable interrupt		
5	RDU	1: enable interrupt	R/W	0
		0: disable interrupt		
4	RXFULL	1: enable interrupt	R/W	0
		0: disable interrupt		
3, 1	RSVD	Reserved.	-	-
2	RXRUNT	1: enable interrupt	R/W	0
		0: disable interrupt		
0	ROK	1: enable interrupt	R/W	0
		0: disable interrupt		

0xBD20_003E 0xBD30_003E Ethernet0 Interrupt Status Register (ETH0_ISR) Ethernet1 Interrupt Status Register (ETH1_ISR)

OABBEO_OCEE	Etherne			upi	000	cub		5-50	· .				-
31	16 15 14 13 12	11	10	9	8	7	6	5	4	3	2	1	0
	(Reserved)	S	T	L	T	T	R	R	R	R	R	R
			W	D	N	Е	О	D	X	S	X	S	О
			I	U	K	R	K	U	F	V	R	V	K
			n		C				U	D	U	D	
			t		Н				L		N		
					G				L		T		

Bit	Bit Name	Description	R/W	InitVal
10	SWInt	Software Interrupt pending:	R/W	0
		When set to 1 indicates a software interrupt was		
		forced. Write 1 to clear.		
9	TDU	Tx Descriptor Unavailable:	R/W	0
		When set, indicates Tx descriptor is unavailable.		
8	LNKCHG	Link Change:	R/W	0
		Set to 1 when link status is changed. Write 1 to		
		clear.		
7	TER	Transmit (Tx) Error:	R/W	0
		Indicates that a packet transmission was aborted,		
		due to excessive collisions, according to the		
		TXRR's setting. Write 1 to clear.		
6	TOK	Transmit Interrupt:	R/W	0
		Indicates that the DMA of the last descriptor of		
		RxIntMitigation number of Tx packet has		
		completed and the last descriptor has been closed.		
		Write 1 to clear.		
5	RDU	Rx Descriptor Unavailable:	R/W	0
		When set, indicates Rx descriptor is unavailable or		
		Rx_Pse_Des_Thres was broken.		
4	RXFULL	Rx FIFO Overflow, caused by RBO/RDU, poor	R/W	0
		system bus (Lexra bus) performance, or		
		overloaded Lexra bus traffic.		
3, 1	RSVD	Reserved.	-	-
2	RXRUNT	Rx error caused by runt error characterized by the	R/W	0
		frame length in bytes being less than 64 bytes.		
		Write 1 to clear.		
0	RXOK	Receive (Rx) OK:	R/W	0
		This interrupt is set either when RxIntMitigation		

w.DataS	heet4U.com	packet is met or RxPktTimer expires.	Write 1 to	
		clear.		

0xBD20_0040 0xBD30_0040 Ethernet0 Transmit Configuration Register (ETH0_TCR) Ethernet1 Transmit Configuration Register (ETH1_TCR)

OADDS0_0040 Etherhett Hu	insimi comiguia	tion register (DITT_I Cit)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1	12 11 10 9 8	7 6 5 4 3 2 1 0
(Reserved)	IFG LBK	(Reserved)

Reset: 0x0000_0C00

Bit	Bit Name	Desc	cript	ion			R/W	InitVal
12-10	IFG	Interadju stand The us (1	Franst the dard: time	neGa e inte : 9.6 : can ops) nula f	ap Time: This field a erframe gap time lon us for 10Mbps, 960 be programmed from and 960ns to 1440ns for the inter frame gas are seen in the interframe gas	ger than the ns for 100Mbps. n 9.6 us to 14.4 (100Mbps).	R/W	3
9-8	LBK	TX+ The link 00: 01: 10:	-/- lir loop state norn Rese Rese	nes u back al o erved erved		est condition.	R/W	0

0xBD20_0044 0xBD30_0044 Ethernet0 Receive Configuration Register (ETH0_RCR) Ethernet1 Receive Configuration Register (ETH1_RCR)

UA	J	u_ u	UTT												-	uici	IICt.		CCI		OIII	Su	au	,,,,	vcg.	Sici	(12				•)
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											(Res	serv	ed)												Α	A	Α	A	A	Α	A
																									F	Е	R	В	M	P	A
																									L	R				M	P
																									O						
																									W						

Bit	Bit Name	Description	R/W	InitVal
6	AFLOW	Set 1 to accept flow control packets	R/W	0
5	AER	with CRC error, alignment error, and/or collided	R/W	0
		fragments will be accepted. When set to 0, all packets with CRC error, alignment error, and/or collided fragments will be rejected.		
4	AR	Accept Runt: This bit allows the receiver to accept	R/W	0

ww.DataS	heet4U.com	packets that are smaller than 64 bytes. The packet must be at least 8 bytes long to be accepted as a runt. Set to 1 to accept runt packets.		
3	AB	Set to 1 to accept broadcast packets, 0 to reject.	R/W	0
2	AM	Set to 1 to accept multicast packets, 0 to reject.	R/W	0
1	APM	Set to 1 to accept physical match packets, 0 to reject.	R/W	0
0	AAP	Set to 1 to accept all packets with physical destination address, 0 to reject.	R/W	0

0xBD20_0058 0xBD30_0058	Etherne Etherne				•	_	,		_		-
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14	13 12 1	11 10	9	3 7	6	5	4	3	2	1	0
(Reserved)				F	R	T	R	S	L	T	R
				T	X	X	S	P	I	X	X
				X	F	F	V	Ε	N	P	P
				F	C	C	D	Ε	K	F	F
				C	Е	Е		D	В		

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
7	FTXFC	Force Tx Flow Control:	R/W	0
		1 = enabled Flow control in the absence of NWAY.		
		0 = disables Flow control in the absence of		
		NWAY.		
6	RXFCE	RX Flow control Enable: The flow control is	R/W	0
		enabled in full-duplex mode only. Packets are		
		dropped if buffer is exhausted. Default is 0.		
		1 = Rx Flow Control Enabled.		
		0 = Rx Flow Control Disabled.		
5	TXFCE	Tx Flow Control Enable:	R/W	0
		1 = enable flow control		
		ACCEPT ERRORS MUST NOT BE ENABLED		
4	RSVD	Reserved.	R/W	0
3	SPEED	Media Mode: $1 = 10$ Mbps. $0 = 100$ Mbps.	R/W	0
2	LINKB	Inverse of Link status. 0 = Link OK. 1 = Link Fail.	R/W	0
1	TXPF	Tx Pause frame:	R/W	0
		1: Ethernet NIC has sent a pause packet.		
		0: Ethernet NIC has sent a timer done packet.		
0	RXPF	Pause Flag:	R/W	0
		1 = Ethernet NIC is in backoff state because a		
		pause packet received.		
		0: pause state is clear.		

		20_00 30_00																			MII MII				0		,		_		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
F		PH	YAE	DDR			(R	eserv	ved))		RE	GAI	DDR								Ι	DAT	ГА							
L																															
Α																															
G																															

Bit	Bit Name	Description	R/W	InitVal
31	FLAG	Flag bit, used to identify access to MII register:	R/W	0
		1: Write data to MII register. Turns to 0		

\\\\\\	w.DataS		automatically upon completion of MAC writing to the specified MII register. 0: Read data from MII register. Turns to 1 automatically upon completion of MAC reading the specified MII register. Read write turn around time I s about 64 us.		
	30-26	PHYADDR	Defines the Phy address for the MII.	R/W	0x1
	20-16	REGADDR	5-bit MII register address.	R/W	0
Ī	15-0	DATA	16 bit MII resgister data.	R/W	0

 0xBD20_1300
 Ethernet0 TX First Descriptor Pointer 1 Register (ETH0_TXFDP1)

 0xBD30_1300
 Ethernet1 TX First Descriptor Pointer 1 Register (ETH1_TXFDP1)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | TxFDP1

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-0	TxFDP1	High priority Tx First Descriptor Pointer to the Tx	R/W	0
		Ring.		

 0xBD20_1304
 Ethernet0 TX Current Descriptor Offset 1 Register (ETH0_TXCDO1)

 0xBD30_1304
 Ethernet1 TX Current Descriptor Offset 1 Register (ETH1_TXCDO1)

 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 14
 3
 2
 1
 10

31 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | (Reserved) TxCDO1

Reset: 0x0000 0000

Bit	Bit Name	Description	R/W	InitVal
5-0	TxCDO1	High priority Tx Current Descriptor Offset:	R/W	0
		FDP+CDO = current descriptor pointer. CDO		
		increments by 16 bytes each time.		

0xBD20_1380Ethernet0 TX First Descriptor Pointer 2 Register (ETH0_TXFDP2)0xBD30_1380Ethernet1 TX First Descriptor Pointer 2 Register (ETH1_TXFDP2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TxFDP2																															

Reset: 0x0000 0000

Bit	Bit Name	Description	R/W	InitVal
31-0	TxFDP2	Tx First Descriptor Pointer to the low priority Tx	R/W	0
		Ring.		

 0xBD20_1384
 Ethernet0 TX Current Descriptor Offset 2 Register (ETH0_TXCDO2)

 0xBD30_1384
 Ethernet1 TX Current Descriptor Offset 2 Register (ETH1_TXCDO2)

 31
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 10

31 16	15	14	13	12	11	10	9	8	7		5	4	3	2	1	0
	(Reserved)						TxCDO2									

Bit	Bit Name	Description	R/W	InitVal
5-0	TxCDO2	Low priority Tx Current Descriptor Offset:	R/W	0
		FDP+CDO = current descriptor pointer. CDO		

10/10	w DataSheet4II.com	increments by 16 bytes each time.	

 0xBD20_13F0
 Ethernet0 RX First Descriptor Pointer Register (ETH0_RXFDP)

 0xBD30_13F0
 Ethernet1 RX First Descriptor Pointer Register (ETH1_RXFDP)

31	30	29	28	27	26	25	24		21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													R	xFD	P															

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-0	RxFDP	Rx First Descriptor Pointer to the Rx Descriptor	R/W	0
		Ring.		

0xBD20_13F4	Ethernet0 RX Current Descriptor Offset Register (ETH0_RXCDO)
0xBD30_13F4	Ethernet1 RX Current Descriptor Offset Register (ETH1_RXCDO)
31	16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	(Reserved) RxCDO

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
5-0	RxCDO	Rx Current Descriptor Offset: RxFDP+RxCDO =	R/W	0
		current descriptor pointer. CDO increments by		
		16 each time (each increment is one byte).		

0xBD20_13F6Ethernet0 RX Descriptor Ring Size Register (ETH0_RXRINGSIZE)0xBD30_13F6Ethernet1 RX Descriptor Ring Size Register (ETH1_RXRINGSIZE)

31		8	7	6	5	4	3	2	1	0
				(Reserved)		SIZ	ZE			

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
1-0	SIZE	This is the total number of descriptors in the Rx	R/W	0
		descriptor ring.		
		00: 16 descriptors		
		01: 32 descriptors		
		10: 64 descriptors		

0xBD20_1430Ethernet0 RX CPU Descriptor Number Register (ETH0_RXCPUDESC)0xBD30_1430Ethernet1 RX CPU Descriptor Number Register (ETH1_RXCPUDESC)

31 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 (
			(Re	serv	red)			W	RS	VD	Rx	_CP	U_	Des	_Nu	m
								R								
								Α								
								P								

Bit	Bit Name	Description	R/W	InitVal
8	WRAP	This indicates to Ethernet NIC that Ethernet driver	R/W	0
		has allocated free RX CMD descriptors past End		
		Of Ring. Ethernet NIC module will clear this bit		
		when it wraps around the RX CMD descriptor		
		ring.		
5-0	Rx_CPU_Des_	N This is the descriptor # which the CPU has	R/W	0

www.DataS umt4U.com	finished processing and returned to IO. CPU needs to update this. When Ethernet descriptor processing reaches End Of Ring, Ethernet driver must set "WRAP" (1431h) bit to high. This will		
	indicate to Ethernet NIC module that descriptors have been allocated past end of ring descriptor.		

0xBD20_1432	Ethernet0 RX PSE Descriptor Threshold Register (ETH0_RXPSEDESC)
0xBD30_1432	Ethernet1 RX PSE Descriptor Threshold Register (ETH1_RXPSEDESC)
31	16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	(Reserved) Rx_PSE_Des_Num

Reset: 0x0000_0000

	Bit Name	Description	R/W	InitVal
5-0	Rx_PSE_Des_N	Tx Threshold: Specifies the threshold level in the	R/W	0
	um	Tx FIFO to begin the transmission. When the byte		
		count of the data in the Tx FIFO reaches this level,		
		(or the FIFO contains at least one complete packet		
		or the end of a packet) the Ethernet NIC module		
		will transmit this packet.		

0xBD20_1434 0xBD30_1434 Ethernet0 I/O Command Register (ETH0_IOCMD) Ethernet1 I/O Command Register (ETH1_IOCMD)

0ABB30_1434			Lincinc	11100	Ommuna IV	egister (Lili	`		1111	
31 30 29 28 27 26 25 24 23 22 21	20 19	18 17 16	15 14 13	12 11	10 9 8	7 6 5 4	3	2	1 0)
(Reserved)	T	TxInt	RXPkt	R	RxInt	(Reserved)	R	T	T	T
	X	Mitigation	Timer	X	Mitigation		Е	Ε	X	X
	T			F					F	F
	Н			T					N .	N
				Н					L	Н

Bit	Bit Name	Description	R/W	InitVal
20-19	TXTH	Tx Threshold: Specifies the threshold level in the	R/W	0
		Tx FIFO to begin the transmission. When the byte		
		count of the data in the Tx FIFO reaches this level,		
		(or the FIFO contains at least one complete packet		
		or the end of a packet) the NIC will transmit this		
		packet.		
		00: 64 bytes		
		01: 128 bytes		
		10: 256 bytes		
		11: Reserved		
18-16	TxIntMitigation	This sets the number of packets received before	R/W	0
		TxOK interrupt is triggered.		
		000- 1 pkt 001- 2 pkts		
		010- 3 pkt 011- 4 pkts		
		100- 5 pkt 101- 6 pkts		
		110- 7 pkt 111- 8 pkts		
15-13	RXPktTimer	Timer to trigger RxOK interrupt after receipt of	R/W	0
		RxIntMitigation pkts.		
		000 – no timer set		
		001 ~ 111 : the timer interval defining a multiple		

w.DataS	heet4U.com				
12-11	RXFTH	Rx FIFO Threshold: Specievel. When the number of from a packet, which is because it is sufficient to the fifth of the first that the first th	R/W	0	
10-8 RxIntMitigation		This sets the number of p RxOK interrupt is trigger packets of size larger that is asserted the mitigation reinitialized. 000- 1 pkt	R/W	0	
		010- 3 pkts 100- 5 pkts 110- 7 pkts	011- 4 pkts 101- 6 pkts 111- 8 pkts		
3	RE	MII Rx Enable	v p	R/W	0
2	TE	MII Tx Enable		R/W	0
1	TXFNL	Low Priority DMA-Ether 1: Enable. 0: Disable.	R/W	0	
0	TXFNH	High Priority DMA-Ethe 1: Enable. 0: Disable.	rnet Transmit enable.	R/W	0

10. UART Controller

RTL8186 features two 16C550 compatible UART, containing a 16-bytes FIFO on each. In addition, auto flow control is provided, in which, auto-CTS mode (CTS controls transmitter) and auto-RTS mode (Receiver FIFO contents and threshold control RTS) are both supported. The baud rate is programmable and allows division of any input reference clock by 1 to (2^16-1) and generates an internal 16x clock. RTL8186 provides fully programmable serial interface, which can be configured to support 7,8 bit characters, even, odd, no parity generation and detection, and 1 or 2 stop bit generation. Also, fully prioritized interrupt control and loopback functionality for diagnostic capability are provided.

Register Summary

Virtual address	Size (byte)	Name	Description	Access
0xBD01_00C3	1	UART0_RBR	Receiver buffer register. (DLAB=0)	R
0xBD01_00C3	1	UART0_THR	Transmitter holding register. (DLAB=0)	W
0xBD01_00C3	1	UART0_DLL	Divisor latch LSB. (DLAB=1)	R/W

	T	1	1	_
0xBD01_00C7	nh	UART0_IER	Interrupt enable register. (DLAB=0)	R/W
0xBD01_00C7	1	UART0_DLM	Divisor latch MSB. (DLAB=1)	R/W
0xBD01_00CB	1	UART0_IIR	Interrupt identification register.	R
0xBD01_00CB	1	UART0_FCR	FIFO control register	W
0xBD01_00CF	1	UART0_LCR	Line control register	R/W
0xBD01_00D3	1	UART0_MCR	Modem control register	R/W
0xBD01_00D7	1	UART0_LSR	Line status register	R/W
0xBD01_00DB	1	UART0_MSR	Modem status register	R/W
0xBD01_00DF	1	UART0_SCR	Scratch register	R/W
0xBD01_00E3	1	UART1_RBR	Receiver buffer register. (DLAB=0)	R
0xBD01_00E3	1	UART1_THR	Transmitter holding register. (DLAB=0)	W
0xBD01_00E3	1	UART1_DLL	Divisor latch LSB. (DLAB=1)	R/W
0xBD01_00E7	1	UART1_IER	Interrupt enable register. (DLAB=0)	R/W
0xBD01_00E7	1	UART1_DLM	Divisor latch MSB. (DLAB=1)	R/W
0xBD01_00EB	1	UART1_IIR	Interrupt identification register.	R
0xBD01_00EB	1	UART1_FCR	FIFO control register	W
0xBD01_00EF	1	UART1_LCR	Line control register	R/W
0xBD01_00F3	1	UART1_MCR	Modem control register	R/W
0xBD01_00F7	1	UART1_LSR	Line status register	R/W
0xBD01_00FB	1	UART1_MSR	Modem status register	R/W
0xBD01_00FF	1	UART1_SCR	Scratch register	R/W

		B = 0, Read_Mode)	UARTO I							
	01_00E3 (DLAF	B = 0, Read_Mode)	UART1 I	Receive E	Buffe	er Reg	iste	r (UA	RT1	_RBR)
31					8	7 6	5	4 3	2	1 0
								RDA	ГА	
Reset	: 0x00									
0xBD	01_00C3 (DLAI	B = 0, Write_Mode)	UART0 Transn	nitter Ho	ldin	g Regi	ister	(UA)	RTO_	THR)
0xBD	01_00E3 (DLAF	B = 0, Write_Mode)	UART1 Transm	itter Ho	ldin	g Regi	ster	· (UAl	RT1_	THR)
31					8	7 6	5	4 3	2	1 0
								WDA	TA	
Reset	0x00									
0xBD	01_00C3 (DLAI	B = 1)	UARTO Divis							
0xBD	01_00E3 (DLAF	B = 1)	UART1 Divis	or Latch	LS	B Reg	iste	r (UA	RT1	_DLL)
31					8	7 6	5	4 3	2	1 0
								DLL	В	
Reset	: 0x00									
Bit	Bit Name	Description	R/V	V Ini	tVa	l				
7-0	RDATA	Receive Data	R	0						
Bit	Bit Name	Description	R/V	V Ini	tVa	l				
7-0	WDATA	Write Transmit Holding Data	W	0						
Bit	Bit Name	Description	R/V	V Ini	tVa	l				
7-0	DLLB	Divisor Latch LSB	R/V	V 0						

UART0 Interrupt Enable Register (UART0_IER)
UART1 Interrupt Enable Register (UART1_IER)

8 7 6 5 4 3 2 1 0

 $0xBD01_00C7 (DLAB = 0)$ $0xBD01_00E7 (DLAB = 0)$

www.DataSheet4U.com

R E E E E E E E E S L S D L T R V P L S S B B D P S I E I I I I I

Reset: 0x00

0xBD01_00C7 (DLAB = 1) 0xBD01_00E7 (DLAB = 1) UART0 Divisor Latch MSB Register (UART0_DLM)
UART1 Divisor Latch MSB Register (UART1_DLM)

31										8	7	6	5	4	3	2	1	0
															MB	}		

Reset: 0x00

Bit	Bit Name	Description	R/W	InitVal
7-6	RSVD	Reserved		
5	ELP	Low power mode enable	R/W	0
4	ESLP	Sleep mode enable	R/W	0
3	EDSSI	Enable modem status register interrupt	R/W	0
2	ELSI	Enable receiver line status interrupt	R/W	0
1	ETBEI	Enable transmitter holding register empty interrupt	R/W	0
0	ERBI	Enable received data available interrupt	R/W	0
Bit	Bit Name	Description	R/W	InitVal
7-0	DLMB	Divisor Latch MSB	R/W	0

0xBD01_00CB 0xBD01_00EB UART0 Interrupt Identification Register (UART0_IIR) UART1 Interrupt Identification Register (UART1_IIR)

31	7 6	5	4	3 2 1	0
	F		R	I	I
	I		S	I	P
	F		V	D	N
	O		D		D
	6				
	4				

Reset: 0xC0

Bit	Bit Name	Description	R/W	InitVal
7-5	FIFO64	000 = no FIFO	R	110
		110 = 16-byte FIFO		
4	RSVD	Reserved	R	0
3-1	IID	Interrupt ID. IID[1:0] indicates the interrupt priority. Illustrated at following table:	R	000
0	IPND	Interrupt pending 0 = interrupt pending	R	0

Interrupt Priority

Inter Ident	_	on Re	gister	Priority level	Interrupt type	Interrupt source	Interrupt reset method
Bit3	Bit2	Bit1	Bit0				
0	0	0	1	None	None	None	None
0	1	1	0	1	Receiver line status	Overrun, parity, framing errors or break	Read LSR
0	1	0	0	2	Received data available	DR bit is set.	Read RBR.
1	1	0	0	2	Character time-out indication	No characters have been removed from or input to FIFO during the last character times and at 1 character in it.	Read RBR

0 v.Dat	0 Shee	1 U.co	0		Transmitter holding register empty	THRE bit set.	Reading IIR or write THR
0	0	0	0	4	Modem status	CTS#,DSR#,RI#,DCD#	Reading MSR

 $0xBD01_00CB$ HARTO FIFO Control Register (HARTO FCR) 0xBD01_00EB

UART1 FIFO Conti			,				_	,
8	7	6	5	4	3	2	1	0
	I	₹		R		Т	R	Е

31	8	7	6	5	4	2	1	0
		F	₹		R	 T	R	Е
		7	Γ		S	F	F	F
		F	}		V	R	R	I
		(3		D	S	S	F
						T	T	О
Pacat: 0vC0								

Reset: 0xC0

Bit	Bit Name	Description	R/W	InitVal
7-6	RTRG	Receiver trigger level	W	11
		Trigger level: 16-byte		
		00 = 01		
		01 = 04		
		10 = 08		
		11 = 14		
3-5	RSVD	Reserved		
2	TFRST	Transmitter FIFO reset. Writes 1 to clear the	W	0
		transmitter FIFO.		
1	RFRST	Receiver FIFO reset. Writes 1 to clear the receiver	W	0
		FIFO.		
0	EFIFO	Enable FIFO. When this bit is set, enable the	W	0
		transmitter and receiver FIFO. Changing this bit		
		clears the FIFO.		

0xBD01_00CF 0xBD01_00EF

UARTO Line Control Register (UARTO_LCR) UART1 Line Control Register (UART1_LCR)

31 8 7	6	5	4		2	1 0
	D B	I		P	S	W
	L R	I)	E	T	L
	A K	5		N	В	S
	В					

Reset: 0x03

Bit	Bit Name	Description	R/W	InitVal
7	DLAB	Divisor latch access bit.	R/W	0
6	BRK	Break control. Set this bit force TXD to the	R/W	0
		spacing (low) state.(break) Clear this bit to disable		
		break condition.		
5-4	EPS[1:0]	Even parity select	R/W	0
		00 = odd parity		
		01 = even parity		
		10 = mark parity		
		11 = space parity		
3	PEN	Parity enable	R/W	0
2	STB	Number of stop bits	R/W	0
		0 = 1 bit		
		1 = 2 bits		
1-0	WLS[1:0]	Word length select	R/W	11
		10 = 7 bits		

_			
WW	w DataSheet4U com	11 = 8 bits	

0xBD01_00D3 0xBD01_00F3 UART0 Modem Control Register (UART0_MCR) UART1 Modem Control Register (UART1_MCR)

0.122 01_001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			5~~		(
31	8	7	6	5	4	3 2	1	0
		R		A	L	R	R	R
		S		F	О	S	T	S
		V	r	Ε	О	V	S	V
		D)		P	D		D

Reset: 0x00

Bit	Bit Name	Description	R/W	InitVal
7-6	RSVD	Reserved		
5	AFE	Auto flow control enable	R/W	0
4	LOOP	Loopback	R/W	0
2-3	RSVD	Reserved		
1	RTS	Request to send	R/W	0
		0 = Set RTS# high 1 = Set RTS# low		
0	RSVD	Reserved		

0xBD01_00D7 0xBD01_00F7 UARTO Line Status Register (UARTO_LSR) UART1 Line Status Register (UART1_LSR)

VADDVI_VVI	us	IXUE	,151	, I	UAI	(/ I		SK)
31 8	7	6	5	4	3	2	1	0
	R	T	Т	В	F	P	О	D
	F	Е	Н	I	Е	Е	Ε	R
	Ε	M	R					
		T	Е					

Reset: 0x00

Bit	Bit Name Description			
7	RFE Errors in receiver FIFO. At least one parity, framing and break error in the FIFO.		R	0
6	TEMT	Transmitter empty Character mode: both THR and TSR are empty. FIFO mode: both transmitter FIFO and TSR are empty	R	0
5	THRE	Transmitter holding register empty. Character mode: THR is empty. FIFO mode: transmitter FIFO is empty	R	0
4	BI	Break interrupt indicator	R	0
3	FE	Framing error	R	0
2	PE	Parity error	R	0
1	OE	Overrun error. An overrun occurs when the receiver FIFO is full and the next character is completely received in the receiver shift register. An OE is indicated. The character in the shift register will be overwritten.	R	0
0	DR	Data ready. Character mode: data ready in RBR FIFO mode: receiver FIFO is not empty.	R	0

0xBD01_00DB	UART0 Modem Status Register (UART0_MSR)
0xBD01_00FB	UART1 Modem Status Register (UART1_MSR)
31	8 7 6 5 4 3 2 1 0

www.DataSheet4U.com	DR	l D	C	R	Δ
	C I	_	T	S	C
	D	R	S	V	T
				D	S

-	_	~ ~
Reset.	()v	በበ

Bit	Bit Name	Description	R/W	InitVal
7	DCD	In loopback mode, returns the bit 2 of MCR.	R	1
		In normal mode, returns 1.		
6	RI	In loopback mode, returns the bit 3 of MCR.	R	0
		In normal mode, returns 0.		
5	DSR	In loopback mode, returns the bit 0 of MCR	R	1
		In normal mode, returns 1.		
4	CTS	Clear to send.	R	0
		0 = CTS# detected high		
		1 = CTS# detected low		
3-1	RSVD	Reserved		
0	Δ CTS	Delta clear to send. CTS# signal transits.	R	0

11. Timer & Watchdog

There are four sets of hardware timers and one watchdog timer. Each timer can be configured as timer mode or counter mode. In both counter and timer mode, the time value is counted down from the initial value to zero (the value is reduced one for every timer clock). When the value reaches zero, the timer stops and an interrupt is issued. When an interrupt is issued in timer mode, the time value will be reset to its initial value and the count down will restart. An interrupt will be issued whenever the count down value reaches zero.

The source clock of timer could be configured to use base clock directly, or based on the base clock divided by a configurable register value – CDBR.

When watchdog timer is enabled, it will cause a system reset when a time-out occurs. The time-out interval may be set in the registers. The time unit value is based on the base clock divided by the base value, which is the same used by all timer.

Register Summary

Virtual address	Size (byte)	Name	Description	Access
0xBD01_0050	2	TCCNR	Timer/Counter control register	R/W
0xBD01_0054	1	TCIR	Timer/Counter interrupt register	R/W
0xBD01_0058	2	CDBR	Clock division base register	R/W
0xBD01_005C	2	WDTCNR	Watchdog timer control register	R/W
0xBD01_0060	3	TC0DATA	Timer/Counter 0 data register. It specifies the time-out duration.	R/W
0xBD01_0064	3	TC1DATA	Timer/Counter 1 data register. It specifies the time-out duration.	R/W
0xBD01_0068	4	TC2DATA	Timer/Counter 2 data register. It specifies the time-out duration.	R/W
0xBD01_006C	4	TC3DATA	Timer/Counter 3 data register. It specifies the time-out duration.	R/W
0xBD01_0070	3	TC0CNT	Timer/Counter 0 count register	R
0xBD01_0074	3	TC1CNT	Timer/Counter 1 count register	R
0xBD01_0078	4	TC2CNT	Timer/Counter 2 count register	R
0xBD01_007C	4	TC3CNT	Timer/Counter 3 count register	R

0xBD01_0050_com					,	Гimе	er/C	our	ıter	Co	ntre	ol re	egis	ter	(T(CCN	NR)
31	16	15	14 1	3	12	11	10	9	8	7	6	5	4	3	2	1	0
		(I	Reser	ve	d)	T	T	T	T	T	T	T	T	T	T	T	T
						C	C	C	C	C	C	C	C	C	C	C	C
						3	2	1	0	3	3	2	2	1	1	0	0
						S	S	S	S	M	Ε	M	Е	M	Ε	M	Ε
						R	R	R	R	O	N	O	N	O	N	О	N
						C	C	C	C	D		D		D		D	
										Е		E		Е		Е	

Reset: 0x0000 0000

Bit	Bit Name	Description	R/W	InitVal
11	TC3SRC	Timer/Counter 3 clock source	R/W	0
		0=Base clock		
		1=Basic timer		
10	TC2SRC	Timer/Counter 2 clock source	R/W	0
		0=Base clock		
		1=Basic timer		
9	TC1SRC	Timer/Counter 1 clock source	R/W	0
		0=Base clock		
		1=Basic timer		
8	TC0SRC	Timer/Counter 0 clock source	R/W	0
		0=Base clock		
		1=Basic timer		
7	TC3MODE	Timer/Counter 3 mode	R/W	0
		0=counter mode		
		1=timer mode		
6	TC3EN	Timer/Counter 3 enable	R/W	0
5	TC2MODE	Timer/Counter 2 mode	R/W	0
		0=counter mode		
		1=timer mode		
4	TC2EN	Timer/Counter 2 enable	R/W	0
3	TC1MODE	Timer/Counter 1 mode	R/W	0
		0=counter mode		
		1=timer mode		
2	TC1EN	Timer/Counter 1 enable	R/W	0
1	TC0MODE	Timer/Counter 0 mode	R/W	0
		0=counter mode		
		1=timer mode		
0	TC0EN	Timer/Counter 0 enable	R/W	0

0xBD01_0054	Timer/Counter In	terr	upt	Re	gist	ter (TC	IR)
31	8 7	6	5	4	3	2	1	0
	Т	T	T	T	T	T	T	T
	C	C	C	C	C	C	C	C
	3	2	1	0	3	2	1	0
	I	I	Ι	I	I	I	I	I
	P	P	P	P	Ε	Ε	Ε	Ε

Reset: 0x00

Bit	Bit Name	Description	R/W	InitVal
7	TC3IP	Timer/Counter 3 interrupt pending. Write "1" to	R/W	0
		clear the interrupt.		
6	TC2IP	Timer/Counter 2 interrupt pending. Write "1" to	R/W	0
		clear the interrupt.		
5	TC1IP	Timer/Counter 1 interrupt pending. Write "1" to	R/W	0
		clear the interrupt.		
4	TC0IP	Timer/Counter 0 interrupt pending. Write "1" to	R/W	0
		clear the interrupt.		

//V/	3 v.DataS	TC3IE _{com}	Timer/Counter 3 interrupt enable	R/W	0
	2	TC2IE	Timer/Counter 2 interrupt enable	R/W	0
	1	TC1IE	Timer/Counter 1 interrupt enable	R/W	0
	0	TC0IE	Timer/Counter 0 interrupt enable	R/W	0

0xBD01_0058						Clo	ck l	Divi	sio	n B	ase	Re	giste	er (C D I	BR)
31	16 15	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		DivFactor														

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
15-0	DivFactor	The divide factor of clock source. If the DivFactor	R/W	0
		is N, the watchdog timer is divided by N+1. This		
		value cannot be 0 in timer or watchdog mode. The		
		clock source is 22MHz.		

0xBD01_005C					V	/atchd	og C	on	trol	Reg	giste	er ('	WDT	CNR
31	16	15 1	4 13	12	11	10 9	8	7	6	5	4	3	2	0
			(Rese	rved)		0	W				WD	TE	<u>.</u>	
						V	D							
						S	T							
						E	C							
						L	L							
							R							

Reset: 0x00A5

Bit	Bit Name	Description	R/W	InitVal
10-9	OVSEL	Overflow select. These bits specify the overflow	R/W	00
		condition when the watchdog timer counts to the		
		value.		
		$00 = 2^{13}$		
		$01 = 2^{14}$		
		$10 = 2^{15}$		
		$11 = 2^{16}$		
8	WDTCLR	Watchdog clear. Write a 1 to clear the watchdog	W	0
		counter. It is auto cleared after the write.		
7-0	WDTE	Watchdog enable. When these bits are set to 0xA5,	W	0xA5
		the watchdog timer stops. Other value can enable		
		the watchdog timer and cause a system reset when		
		an overflow signal occurs.		

0x	BD0	1_0	060																T	ime	r/Co	oun	iter	0 D	ata	reg	iste	er ('	TC	DA	TA)
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	(Reserved)															TO	COD	ata													

Bit	Bit Name	Description	R/W	InitVal
23-0	TC0Data		R/W	0
		time-out duration.		

0xBD01_0064			Timer/Counter 1 Data register (TC1DATA)
31 30 29 28	27 26 25 24	23 22 21 20 19 1	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3	2 1 0

www.DataShe(Reserved)	TC1Data
	I

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
23-0	TC1Data	Timer/Counter 1 data register. It specifies the	R/W	0
		time-out duration.		

 0xBD01_0068
 Timer/Counter 2 Data register (TC2DATA)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

 TC2Data

Reset: 0x0000 0000

Bit	Bit Name	Description	R/W	InitVal
31-0	TC2Data	Timer/Counter 2 data register. It specifies the	R/W	0
		time-out duration.		

 0xBD01_006C
 Timer/Counter 3 Data register (TC3DATA)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

 TC3Data

Reset: 0x0000 0000

Bit	Bit Name	Description	R/W	InitVal
31-0	TC3Data	Timer/Counter 3 data register. It specifies the	R/W	0
		time-out duration.		

 0xBD01_0070
 Timer/Counter 0 Counter register (TC0CNT)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

 (Reserved)
 TC0Value

Reset: 0x0000 0000

Bit	Bit Name	Description	R/W	InitVal
23-0	TC0Value	The timer or counter initial value	R/W	0

 0xBD01_0074
 Timer/Counter 1 Counter register (TC1CNT)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

 (Reserved)
 TC1Value

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
23-0	TC1Value	The timer or counter initial value	R/W	0

 0xBD01_0078
 Timer/Counter 2 Counter register (TC2CNT)

 31
 30
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 TC2Value

Bit	Bit Name	Description	R/W	InitVal
31-0	TC2Value	The timer or counter initial value	R/W	0

www.DataSheet4LL.com

0xBD01_007C	Timer/Counter 3 Counter register (TC3CNT)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14	13 12 11 10 9 8 7 6 5 4 3 2 1 0
TC3Value	

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-0	TC3Value	The timer or counter initial value	R/W	0

12. GPIO Control

RTL8186 provides seven sets of GPIO pins – PortA, PortB, PortC, PortD, PortE, PortF, and PortG. Every GPIO pin can be configured as input or output pins via register **PxDIR**. Register **PxDATA** could be used to control the signals (high or low) of GPIO pins. Only the GPIO PortA and PortF have dedicated pins, the others are shared pins with other functions. Following table illustrates the GPIO PortX pin-out and their mux-ed function pins.

GPIO Group Pins	Shared Function Pins	Available Package	Control Mechanism
GPBPIN[0]	CTS0PIN	Both	In 208 QFP package:
GPBPIN[1]	RTS0PIN		ICFG[12] = 1 and $ICFG[11] = 0$ to enable the GPIOB
			function, else disable GPIOB.
			In 256 BGA package:
			ICFG[12] = 1 to enable the GPIOB function, else disable
			GPIOB.
GPBPIN[2]	SIN0PIN	Both	In both package, ICFG[12] = 1 to enable the GPIOB
GPBPIN[3]	SOUT0PIN		function, else disable GPIOB.
GPCPIN[0]	MDPIN[16]	Both	In both package, ICFG[13] = 1 to enable the GPIOC
GPCPIN[1]	MDPIN[17]		function, else disable GPIOC.
GPCPIN[2]	MDPIN[18]		
GPCPIN[3]	MDPIN[19]		
GPCPIN[4]	MDPIN[20]		
GPCPIN[5]	MDPIN[21]		
GPCPIN[6]	MDPIN[22]		
GPCPIN[7]	MDPIN[23]		
GPCPIN[8]	MDPIN[24]		
GPCPIN[9]	MDPIN[25]		
GPCPIN[10]	MDPIN[26]		
GPCPIN[11]	MDPIN[27]		
GPCPIN[12]	MDPIN[28]		
GPCPIN[13]	MDPIN[29]		
GPCPIN[14]	MDPIN[30]		
GPCPIN[15]	MDPIN[31]		
GPDPIN[0]	WRXCPIN	Both	In both package, SYSCFG[14] = 1 to enable GPIOD
			function, else disable GPIOD
GPDPIN[1]	WRXDPIN[0]	Both	In 208 QFP package:
GPDPIN[2]	WRXDPIN[1]		SYSCFG[14] = 1 and $SYSCFG[10] = 0$ to enable GPIOD
GPDPIN[3]	WRXDPIN[2]		function, else disable GPIOD.
GPDPIN[4]	WRXDPIN[3]		In 256 BGA package:
			SYSCFG[14] = 1 to enable GPIOD function, else disable
			GPIOD.
GPDPIN[5]	WRXDVPIN	Both	In both package, SYSCFG[14] = 1 to enable GPIOD
GPDPIN[6]	WTXCPIN		function, else disable GPIOD
GPDPIN[7]	WTXEPIN		
GPDPIN[8]	WTXDPIN[0]		
GPDPIN[9]	WTXDPIN[1]		

	1		_
GPDPIN[10]4U.com	WTXDPIN[2]		
GPDPIN[11]	WTXDPIN[3]		
GPDPIN[12]	WCOLPIN		
GPDPIN[13]	WMDIOPIN		
GPDPIN[14]	WMDCPIN		
GPEPIN[0]	NAFBUSYBPIN	Both	In both package, SYSCFG[15] = 1 to enable GPIOE
GPEPIN[1]	NAFCLEPIN		function, else disable GPIOE
GPEPIN[2]	NAFALEPIN		
GPEPIN[3]	MCSPIN[4]		
GPEPIN[4]	MCSPIN[5]		
GPEPIN[5]	NAFWEBPIN		
GPEPIN[6]	NAFREBPIN		
GPGPIN[0]	PCIADPIN[0]	256 BGA	In 256 BGA package, SYSCFG[16] = 1 to enable
GPGPIN[1]	PCIADPIN[1]		GPIOG, else disable GPIOG.
GPGPIN[2]	PCIADPIN[2]		
GPGPIN[3]	PCIADPIN[3]		
GPGPIN[4]	PCIADPIN[4]		
GPGPIN[5]	PCIADPIN[5]		
GPGPIN[6]	PCIADPIN[6]		
GPGPIN[7]	PCIADPIN[7]		
GPGPIN[8]	PCIADPIN[8]		
GPGPIN[9]	PCIADPIN[9]		
GPGPIN[10]	PCIADPIN[10]		
GPGPIN[11]	PCIADPIN[11]		
GPGPIN[12]	PCIADPIN[12]		
GPGPIN[13]	PCIADPIN[13]		
GPGPIN[14]	PCIADPIN[14]		
GPGPIN[15]	PCIADPIN[15]		
GPGPIN[16]	PCIADPIN[16]		
GPGPIN[17]	PCIADPIN[17]		
GPGPIN[18]	PCIADPIN[18]		
GPGPIN[19]	PCIADPIN[19]		
GPGPIN[20]	PCIADPIN[20]		
GPGPIN[21]	PCIADPIN[21]		
GPGPIN[22]	PCIADPIN[22]		
GPGPIN[23]	PCIADPIN[23]		
GPGPIN[24]	PCIADPIN[24]		
GPGPIN[25]	PCIADPIN[25]		
GPGPIN[26]	PCIADPIN[26]		
GPGPIN[27]	PCIADPIN[27]		
GPGPIN[28]	PCIADPIN[28]		
GPGPIN[29]	PCIADPIN[29]		
GPGPIN[30]	PCIADPIN[30]		
GPGPIN[31]	PCIADPIN[31]		

Register Summary

Virtual address	Size (byte)	Name	Description	Access
0xBD01_0120	4	GPABDATA	Port A/B data register	R/W
0xBD01_0124	4	GPABDIR	Port A/B direction register	R/W
0xBD01_0128	4	GPABIMR	Port A/B interrupt mask register	R/W
0xBD01_012C	4	GPABISR	Port A/B interrupt status register	R/W
0xBD01_0130	4	GPCDDATA	Port C/D data register	R/W
0xBD01_0134	4	GPCDDIR	Port C/D direction register	R/W
0xBD01_0138	4	GPCDIMR	Port C/D interrupt mask register	R/W
0xBD01_013C	4	GPCDISR	Port C/D interrupt status register	R/W
0xBD01_0140	4	GPEFDATA	Port E/F data register	R/W

0xBD01_0144	:o 4 1	GPEFDIR	Port E/F direction register	R/W
0xBD01_0148	4	GPEFIMR	Port E/F interrupt mask register	R/W
0xBD01_014C	4	GPEFISR	Port E/F interrupt status register	R/W
0xBD01_0150	4	GPGDATA	Port G data register	R/W
0xBD01_0154	4	GPGDIR	Port G direction register	R/W
0xBD01_0158	4	GPGIMR	Port G interrupt mask register	R/W
0xBD01_015C	4	GPGISR	Port G interrupt status register	R/W

0xBD01_0120	GPIO Port A/B DATA Register (GPABDATA)
-------------	--

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	31 30 29 28 27 26 25 24 23 22 21 20 (Reserved)									DA	ГАВ	}		(Re	serv	/ed)						D	4TA	A								

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
19-16	DATAB	Pin data of Port B	R/W	00
10-0	DATAA	Pin data of Port A	R/W	00

0xBD01_0124 GPIO Port A/B Direction Register (GPABDIR)

31 30 29 28 27 26 25 24 23 22 21 20	19 18 17 16 15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0
(Reserved)	DRCB (Reserved)	DRCA

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
19-16	DRCB	Pin direction configuration of Port B	R/W	00
		0 = configured as input pin		
		1 = configured as output pin		
10-0	DRCA	Pin direction configuration of Port A	R/W	00
		0 = configured as input pin		
		1 = configured as output pin		

0xBD01_0128 GPIO Port A/B Interrupt Mask Register (GPABIMR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
(Reserved)								BI	MR			(Re	serv	/ed)						Α	IM	R									

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
19-16	BIMR	PortB interrupt enable	R/W	00
		0 = disable interrupt		
		1 = enable interrupt		
10-0	AIMR	PortA interrupt enable	R/W	00
		0 = disable interrupt		
		1 = enable interrupt		

0xBD01_012C GPIO Port A/B Interrupt Status Register (GPABISR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
31 30 29 28 27 26 25 24 23 22 21 20 (Reserved)											BI	SR			(Re	serv	red)						I	AIS]	R						
	,																														

Bit	Bit Name	Description	R/W	InitVal
19-16	BISR	GPIO B interrupt pending status. Write '1' to clear	R/W	0
		interrupt pending status.		

WV	15-OataS	AISRcom	GPIO A interrupt pending status. Write '1' to clear	R/W	0
			interrupt pending status.		

0xBD01_0130	GPIO Port C/D DATA Register (GPCDDATA)
21 20 20 20 27 26 25 24 22 22 21 20 10 10 17 16 15 14 1	2 12 11 10 0 0 7 6 7 4 2 2 1 0

31	30 29 28 27 26 25 24 23 22 21 20 19 18 3	17 16	15 14	13 12	11 10	9 8	7 (5 5	4	3 2	1	0
R	DATAD					DAT	AC					
S												
V												
D												

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
30-16	DATAD	Pin data of Port D	R/W	00
15-0	DATAC	Pin data of Port C	R/W	00

0xBD01_0134 GPIO Port C/D Direction Register (GPCDDIR)

31	30 29 28 27 26 25 24 23 22 21 20	19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R	DRCD		DRCC
S			
V			
D			

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
30-16	DRCD	Pin direction configuration of Port D	R/W	00
		0 = configured as input pin		
		1 = configured as output pin		
15-0	DRCC	Pin direction configuration of Port C	R/W	00
		0 = configured as input pin		
		1 = configured as output pin		

0xBD01_0138 GPIO Port C/D Interrupt Mask Register (GPCDIMR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R							Ι	οIΜ	R													(CIM	1R							
S																															
V																															
D																															

Reset: 0x0000_0000

Bit	Bit Name	Description	R/	/W	InitVal
30-16	DIMR	PortD interrupt enable	R/	/W	0
		0 = disable interrupt			
		1 = enable interrupt			
15-0	CIMR	PortC interrupt enable	R/	/W	0
		0 = disable interrupt			
		1 = enable interrupt			

0xBD01_013C GPIO Port C/D Interrupt Status Register (GPCDISR)

																							- I -				<u> </u>	- (
3	1 30	0 29	9 2	8 2	1 11	5 25	5 2	4 2	23 2	2 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								D.	ISR														CIS	R							

Bit	Bit Name	Description	R/W	InitVal
30-16	DISR	GPIO D interrupt pending status. Write '1' to clear	R/W	0
		interrupt pending status.		
15-0	CISR	GPIO C interrupt pending status. Write '1' to clear	R/W	0

www.DataSheet4U.com interrupt pending status.

0xBD01_0140 GPIO Port E/F DATA Register (GPEFDATA)

31 30 29 28 27 26 25 24 23 22	21 20 19 18 17 16	15 14 13 12 11 10 9 8 7	6 5 4 3 2 1 0
(Reserved)	DATAF	(Reserved)	DATAE

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
21-16	DATAF	Pin data of Port F	R/W	00
6-0	DATAE	Pin data of Port E	R/W	00

0xBD01_0144 GPIO Port E/F Direction Register (GPEFDIR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1 30 29 28 27 26 25 24 23 2 (Reserved)										DR	CF						(Re	serv	ed)						Ι	ORC	Έ			

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
21-16	DRCF	Pin direction configuration of Port F	R/W	00
		0 = configured as input pin		
		1 = configured as output pin		
6-0	DRCE	Pin direction configuration of Port E	R/W	00
		0 = configured as input pin		
		1 = configured as output pin		

0xBD01_0148 GPIO Port E/F Interrupt Mask Register (GPEFIMR)

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ì		1 30 29 28 27 26 25 24 23 2 (Reserved)											FIN	MR					•	(Res	serv	ed)]	EIM	R		
		(Reserveu)																														

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
21-16	FIMR	PortF interrupt enable	R/W	00
		0 = disable interrupt		
		1 = enable interrupt		
6-0	EIMR	PortE interrupt enable	R/W	00
		0 = disable interrupt		
		1 = enable interrupt		

0xBD01_014C GPIO Port E/F Interrupt Status Register (GPEFISR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	(Reserved) FISR									(Reserved)								EISR													

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
21-16	BISR	GPIO F interrupt pending status. Write '1' to clear	R/W	0
		interrupt pending status.		
6-0	AISR	GPIO E interrupt pending status. Write '1' to clear	R/W	0
		interrupt pending status.		

 0xBD01_0150
 GPIO Port G DATA Register (GPGDATA)

 |31 |30 |29 |28 |27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 |9 |8 |7 |6 |5 |4 |3 |2 |1 |0

www.DataSheet4U.com DATAG

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-0	DATAG	Pin data of Port G	R/W	00

 0xBD01_0154
 GPIO Port G Direction Register (GPGDIR)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

 DRCG

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-0	DRCG	Pin direction configuration of Port G	R/W	0
		0 = configured as input pin		
		1 = configured as output pin		

 0xBD01_0158
 GPIO Port G Interrupt Mask Register (GPGIMR)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 0 |

 GIMR

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-0	GIMR	PortG interrupt enable	R/W	00
		0 = disable interrupt		
		1 = enable interrupt		

 0xBD01_015C
 GPIO Port G Interrupt Status Register (GPGISR)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

 GISR

Reset: 0x0000 0000

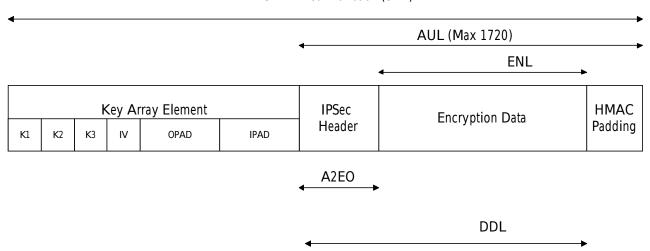
Bit	Bit Name	Description	R/W	InitVal
31-0	GISR	GPIO G interrupt pending status. Write '1' to clear	R/W	0
		interrupt pending status.		

13. IPSec Crypto Engine

The RTL8186 implements an AES/DES/3DES/HMAC-SHA-1/HMAC-MD5 crypto engine to accelerate the packet processing speed when IPSec is enabled within communication protocol. These crypto algorithms can be applied to AH or ESP protocol according to the requirement of security policy. The security engine uses descriptor based access mechanism to service software request. Two descriptor rings are implemented, one called as Source Crypto Descriptors, specifying the source data for encryption/ decryption, and the other one is Destination Crypto Descriptor, defining the output data of encryption/decryption.

The Crypto Engine supports AES/DES/3DES algorithm to operate in both of the two modes: Electronic Code Block (ECB) and Cipher Block Chaining (CBC). The mode applied to the algorithm was specified at descriptor field.

The Crypto Engine supports IV and Key management in descriptor-based manner, these IV and keys are well-organized data structure named Key Array Element. The Crypto Engine loads the keys and IV from the first descriptor of the packet, which the FS field is '1'. The key array resided at system memory and has no alignment limitation.


www.DataSheet4LL.com

To accommodate the fragmentation in IP standard, the Destination Crypto Descriptor supports fragment gathering DMA behavior. The cipher text can overwrite plaintext by setting DDBP field in Destination Crypto Descriptor identical to the SDBP in Source Crypto Descriptor. Number of the Destination Crypto Descriptors is limited to 64, but it is unlimited in the descriptor number of Source Crypto Descriptor.

Descriptor Data Structures used in Crypto Engine

n Payload format diagram

SBDL = sum of each (SBL)

n Source Crypto Descriptor

31	30	29	26	27	26 25 24	23 22 21 20 19 18 17 16	15 14	12	12	11	10 9 8 7 6 5 4 3 2 1 0	
O	R	F	I	R		tication Length, AUL		M		A		Offset 0
W	S	S	S	S	Tutileii	(11 bits)	(2	D	D	E	(11 bits)	Oliset
N	V	S	ъ	V		(11 bits)	bit)	5	E	S	(11 bits)	
IN				ν ν			DIL))		3		
	D			ע					S			
D	esti	nat	ion	D	escriptor	Authentication to	KAI	M	C	R	Encryption Length, ENL	Offset 4
		Inc	lex	, D	DI	Encryption Offset,	(3 bi	ts)	В	S	(11 bits)	
		(8 t	its)	A2EO			\mathbf{C}	V		
						(8 bits)				D		
						` ,						
												Offset 8
						Source Data B	ıffer F	Oin	ter	ST		Offset 6
						Source Data D	ulici i	OIII	tCI.	, 51) J	
	R.	SV	D		Source	Buffer DMA Length,	R	SV	D		Source Buffer Length, SBL	Offset 12
	(5	bit	s)			SBDL	(5	bit	s)		(11 bits)	
						(11 bits)						
						•						

www.DataSheet4U.com Next Descriptor Address Pointer, NDAP Offset 16

Offset#	Bit#	Symbol	Description	on									
0	31	OWN	Crypto En is owned b	indicates that the Source Crypto Descriptor is owned by IPSec agine. When cleared, indicates that the Source Crypto Descriptor by host system. IPSec Crypto Engine clears this bit when the affer data is already encrypted or decrypted.									
			Value	Meaning									
			0	Descriptor own by host system									
			1	Descriptor own by IPSec									
0	30	RSVD	Reserved.										
0	29	FS	First Segn	First Segment.									
			Value	Meaning									
			1	This is the first Source Crypto Descriptor of an IP packet; the SDBP pointes to the physical address of Key Array Element of this packet.									
			0	This is NOT the first Source Crypto Descriptor of an IP Packet.									
0	28	LS	Last Segn	nents.									
			Value	Meaning									
			1	This is the last Source Crypto Descriptor of the packet.									
			0	This is NOT the last Source Crypto Descriptor of the packet.									
0	26-16	AUL		ation Length. If authentication algorithm such as SHA-1/MD5 is as is the byte length that the authentication algorithm should									
0	15-14	MS	Mode Sele	ect.									
			Value	Meaning									
			00	Use DES or 3DES ESP algorithm.									
			01	Use SHA-1 or MD5 AH algorithm.									
			10	SHA-1/MD5 then DES/3DES DES/3DES then SHA-1/MD5									
0	13	MD5		rithm selected.									
ľ	15	111100		MD5 in AH algorithm.									
				HA-1 in AH algorithm.									
0	12	3DES	3DES algo	orithm selected. Effective only when AES bit is '0'. DES in ESP algorithm.									
				DES in ESP algorithm.									
0	11	AES	algorithm	rithm selected. Apply Encrypt/Decrypt (depends on AESAG) to do ESP.									
				LES in ESP algorithm.									
0	10-0	DDL		DES or 3DES (depends on 3DES filed) in ESP algorithm. on Data Length. This value is the length of the write-back packet									
	10-0	DDL		ssed by the crypto engine.									
4	31-24	DDI	Destinatio	on Descriptor Index. This is an index value used to identify the ip of Source Crypto Descriptor and Destination Crypto									

w.Data	Sheet4U.co	om	Descriptor	r. When the crypto engine processed the Source Crypto									
			Descriptor	r, it would write this index value back to the current Destination									
			Crypto De	escriptor that crypto engine consumed.									
4	23-16	A2EO	Authentica	Authentication to Encryption Offset. This is the byte-offset value between									
			the data a	oplied to authentication and encryption. This value must be 4-byte									
			aligned.										
4	15-13	KAM	Key Appli	ed Mechanism. This field specified the mechanism used when									
			3DES enc	ryption is selected.									
			Value	Meaning									
			000	Decrypt with K1, K2, K3									
			010	Decrypt with K1, encrypt with K2, decrypt with K3									
			101	Encrypt with K1, decrypt with K2, encrypt with K3									
			111	Encrypt with K1, K2, K3									
			K1, K2, aı	nd K3 are Key1, Key2, Key3 used in 3DES algorithm.									
2	12	CBC	CBC mod	e in 3DES algorithm selected.									
				BC mode in 3DES ESP algorithm.									
			'0': Use E	BC in 3DES ESP algorithm.									
2	11	RSVD	Reserved.										
4	10-0	ENL	Encryption	n data Length. This is the length of encryption data in byte.									
8	31-0	SDBP	Source Da	tta Buffer Pointer. This pointer points to the physical address of									
				a buffer. If FS = '1', this pointer points to the Key Array Element									
			of the pac										
12	26-16	SBDL		affer DMA Length. This field takes effect only when FS field is									
				SBDL is the DMA byte count of a packet, which may comprise									
			from seve	ral descriptors.									
12	10-0	SBL	Source Bu	affer Length. This is the length of source data buffer in byte in									
12	10 0	SEE	each desci										
	21.0												
16	31-0	NXTDA		criptor Address. This is the physical address pointer to next									
1				. If This field contains all zero, then this is the end of the									
1			descriptor	list.									

n Destination Crypto Descriptor (OWN = 1)

31	30	29	28	27	26	25	24	23	22 2	1	20	19	18	17	7 16	1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	:	1	0	
O	E										erv											D	esti	nati	ion				eng	th,	Dl	BL	,	Offset 0
W									(1	9	bit	s)														(1)	l bi	ts)						
N	R																																	
=																																		
1															_																			
															Re	ese	erv	ed																Offset 4
																																		Offset 8
									D	es	tin	atio	on .	D:	ata	Βı	nff	er l	Poi	nte	r	DDI	ЗP											Oliset 6
										•		uu	J11		uiu			01 1	. 0.		,	<i>DD</i> .	•											
															Re	ese	erv	red																Offset 12
Reserved													211500 12																					

www.DataSheet4U.com	Reserved	Offset 16
	Reserved	Offset 20
	Reserved	Offset 24
	Reserved	Offset 28

Offset#	Bit#	Symbol	Description
0	31	OWN	When set, indicates that the Destination Crypto Descriptor is owned by IPSec Crypto Engine. When cleared, indicates that the Destination Crypto Descriptor is owned by host system. IPSec Crypto Engine clears this bit when the destination buffer is filled with encrypted or decrypted data.
0	30	EOR	End Of Ring. When set, indicates this descriptor is at the end of the descriptor ring.
0	10-0	DBL	Destination Buffer Length. This is the available length of destination buffer in this descriptor.
8	31-0	DDBP	Destination Data Buffer Pointer. This is the destination data buffer physical starting address.

n Destination Crypto Descriptor (OWN = 0)

31	30	29	28	27	26 25 24 23 22	21 20 19	18 17 16	15 14	13	12	11	10 9 8 7	6 5 4 3 2 1	0
О	Е			R	Authenticati	on Length		MS	M	3	R		DMA Length, DDI	Offset 0
W	O	S	S		(1	1 bits)		(2	D	D	S		(11 bits)	
N	R			V				bit)	5	Е	V			
				D				S	D					
_				D			4	TZAD	1	0	n	E	San Lanada ENII	066
טן	esti				I	uthenticati		KAI		C B	R S		ion Length, ENL (11 bits)	Offset 4
	Index, DDI (8 bits)				cryption C A2EO	mset,	(3 01	(3 bits)		V		(11 bits)		
		,	, Ο Γ	nts,	,	(8 bits)				C	Ď			
	(8 Dits)													
														Offset 8
Destination Data Buffer Pointer, DDBP														
Dodination Data Dation, DDD														
								ICV						Offset 12
					(for SH	IA-1, ICV	= 160 b	its; fo	r M	D5	, IC	CV = 128 bits		
														Offset 16
														Offset 20
														Offset 24
													Offset 28	
													O11301 20	
														1

Offset#	Bit#	Symbol	Description
---------	------	--------	-------------

			When set, indicates that the Destination Crypto Descriptor is owned by IPSec Crypto Engine. When cleared, indicates that the Destination Crypto Descriptor is owned by host system. IPSec Crypto Engine clears this bit when the relative buffer data is already encrypted or decrypted.										
			Value	Meaning									
			0	Descriptor own by host system									
			1	Descriptor own by IPSec									
0	30	EOR	End of de	escriptor Ring. When set, this is the last descriptor of the ring.									
0	29	FS	First Segr	ment.									
			Value	Meaning									
			1	This is the first Destination Crypto Descriptor of an IP packet.									
			0	This is NOT the first Destination Crypto Descriptor of an IP Packet.									
0	28	LS	Last Segn	nents.									
			Value	Meaning									
			1	This is the last Destination Crypto Descriptor of the packet.									
			0	This is NOT the last Destination Crypto Descriptor of the packet.									
0	26-16	AUL	Authentic	Authentication Length. If authentication algorithm such as SHA-1/MD5 is									
U	20-10	AUL	applied, this is the byte length that the authentication algorithm had processed.										
0	15-14	MS		Mode Select.									
			Value	Meaning									
			00	Use DES or 3DES ESP algorithm.									
			01	Use SHA-1 or MD5 AH algorithm.									
			10	SHA-1/MD5 then DES/3DES									
			11	DES/3DES then SHA-1/MD5									
0	13	MD5	MD5 algo	orithm selected.									
				MD5 in AH algorithm.									
				SHA-1 in AH algorithm.									
0	12	3DES	3DES alg	gorithm selected. BDES in ESP algorithm.									
				DES in ESP algorithm.									
0	10-0	DDL		on Data Length. This value is the length of the write-back packet									
O	10 0	DDL		essed by the crypto engine.									
4	31-24	DDI		on Descriptor Index. This value is copied from Source Crypto or that output to this destination descriptor.									
4	23-16	A2EO		cation to Encryption Offset. This is the byte-offset value between									
				applied to authentication and encryption. This value must be 4-byte									
4	15-13	KAM	Key Appl	lied Mechanism. This field specified the mechanism used when cryption is selected.									
			Value	Meaning									
			000	Decrypt with K1, K2, K3									
			010	Decrypt with K1, encrypt with K2, decrypt with K3									
			101	Encrypt with K1, decrypt with K2, encrypt with K3									
			111	Encrypt with K1, K2, K3									
I	1												

√4v.Da	itaShe l-2 4U.cc	CBC	CBC mode in 3DES algorithm selected.
			'1': Use CBC mode in 3DES ESP algorithm.
			'0': Use EBC in 3DES ESP algorithm.
4	10-0	ENL	Encryption data Length. This is the length of encrypted data in byte.
8	31-0	DDBP	Destination Data Buffer Pointer. This pointer points to the physical address
			of destination data buffer.
12-31	1 31-0	ICV	Integrity Check Value. This is the result of HMAC-SHA-1 or HMAC-MD5.
			If SHA-1 is used, the length of ICV is 160 bits.
			If MD5 is used, the length of ICV is 128 bits.

n Key Array Element

K1L, Key 1 Left Part	Offset 0
K1R, Key 1 Right Part	Offset 4
K2L, Key 2 Left Part	Offset 8
K2R, Key 2 Right Part	Offset 12
K3L, Key 3 Left Part	Offset 16
K3R, Key 3 Right Part	Offset 20
IVL, IV Left Part	Offset 24
IVR, IV Right Part	Offset 28
OPAD	Offset 32-95
IPAD	Offset 96-159

Offset#	Bit#	Symbol	Description
0	31-0	K1L	3DES/DES: Key 1 Left Part.
			AES: First four bytes of the key
			Note: For AES decryption, the key is the decryption round 1 key.
4	31-0	K1R	3DES/DES: Key 1 Right Part.
			AES: Second four bytes of the key.
			Note: For AES decryption, the key is the decryption round 1 key.
8	31-0	K2L	3DES: Key 2 Left Part.
			AES: Third four bytes of the key.
			Note: For AES decryption, the key is the decryption round 1 key.
12	31-0	K2R	3DES: Key 2 Right Part.
			AES: Fourth four bytes of the key.
			Note: For AES decryption, the key is the decryption round 1 key.
16	31-0	K3L	3DES: Key 3 Left Part.
			AES: First four bytes of the IV.
20	31-0	K3R	3DES: Key 3 Right Part.
			AES: Second four bytes of the IV.

24DataSh	3140.cor	IVL	3DES/DES: IV Left Part.
			AES: Third four bytes of the IV.
28	31-0	IVR	3DES/DES: IV Right Part.
			AES: Fourth four bytes of the IV.
32-95	31-0	OPAD	In SHA-1/MD5, these 64 bytes are output padding XOR-ed with key.
96-159	31-0	IPAD	In SHA-1/MD5, these 64 bytes are input padding XOR-ed with key.

Register Summary

Virtual address	Size (byte)	Name	Description	Access
0xBD10_0000	4	IPSSDAR	IPSec Source Descriptor Starting Address Register	R/W
0xBD10_0004	4	IPSDDAR	IPSec Destination Descriptor Starting Address Register	R/W
0xBD10_0008	1	IPSCFR	IPSec Configuration Register	R/W
0xBD10_0009	1	IPSCR	IPSec Command Register	R/W
0xBD10_000A	1	IPSIMR	IPSec Interrupt Mast Register	R/W
0xBD10_000B	1	IPSISR	IPSec Interrupt Status Register	R/W
0xBD10_000C	4	IPSCTR	IPSec Control Register	R/W

 0xBD10_0000
 IPSec Source Descriptor Starting Address Register (IPSSDAR)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

 SDSA

SI

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-0	SDSA	Source Descriptor Starting Address. This is the	R/W	0
		physical address of first available Source Crypto		
		Descriptor. The address should be 256 byte		
		aligned.		

0xBD10_0004 IPSec Destination Descriptor Starting Address Register (IPSDDAR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DDSA																														

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-0	DDSA	Destination Descriptor Starting Address. This is	R/W	0
		the physical address of first available Destination		
		Crypto Descriptor.		

0xBD10_0008 IPSec Configuration Register (IPSCFR)

31	7	6	5	14	1 1	2	1	0
			R		C	L	C	C
			S		F	В	K	E
		,	V		Е	K	Ε	E
			D			M		

Reset: 0x00

Bit	Bit Name	Description	R/W	InitVal
3	CFE	Configuration Register Enable. Set '1' to enable	R/W	0
		the configuration to IPSCTR register.		
2	LBKM	Loopback mode enable. Set '1' to enable loop	R/W	0

ΛV	w.DataS	heet4U.com	mode of the crypto engine. This will override the command setting in the descriptor.		
	1	CKE	Clock Enable. Set '1' to enable the crypto engine clock.	R/W	0
	0	CEE	Crypto Engine Enable. Set '1' to enable the crypto engine.	R/W	0

0xBD1	10_0009			IPSec (Comi	mar	nd R	egis	ster ((IPS	SCR)
31				8	7	6	5 4	1 3	3 2	1	0
							Rese	erve	ed		P
											О
											L
											L
Reset:	0x00										
Bit	Bit Name	Description	R/W	InitVal							
0	POLL	Descriptor Polling. Set this bit to '1' will kick the	R/W	0							
		crypto engine to fetch the first Source Descriptor									
		pointed by IPSSDAR register.									

0xBD10_000A	IPSec Interrupt	Ma	sk	Re	gist	ter (IPS	IM	R)
31	8	7 (5	5	4	3	2	1	0
							S	D	D
							В	D	D
							F	U	O
							E	Ε	K

	: 0x00			
Bit	Bit Name	Description	R/W	InitVal
2	SBFE	Source Buffer Full Error Interrupt Mask.	R/W	0
		1: Enable		
		0: Disable		
1	DDUE	Destination Descriptor Unavailable Error Interrupt	R/W	0
		Mask.		
		1: Enable		
		0: Disable		
0	DDOK	Destination Descriptor OK Interrupt Mask.	R/W	0
		1: Enable		
		0. Disable		

0xBD10_000B	IPSec Interrupt Status Register (IPSISR)
31	8 7 6 5 4 3 2 1 0
	B D D
	F U O
	E E K

Reset	: 0x00			
Bit	Bit Name	Description	R/W	InitVal
2	SBFE	Source Buffer Full Error Interrupt. Write '1' to	R/W	0
		clear.		
1	DDUE	Destination Descriptor Unavailable Error	R/W	0
		Interrupt. Write '1' to clear.		
0	DDOK	Destination Descriptor OK Interrupt. Write '1' to	R/W	0
		clear.		

www.DataSheet4U.com

0xBD10_000C	IPSec Control Register (IPSCTR)
-------------	---------------------------------

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erve	d		(С]	Rese	rvec	1		В	В	R	Ι	DET	S	R	D	MB	S		Re	ser	ved		S	ME	SS
]	K							R	I	S				S											
						,	S								S	V				V											
															T	D				D											

Reset: 0x0300_0000

Bit	Bit Name	Description	R/W	InitVal
25-24	CKS	Crypto engine Clock Source Select.	R/W	11
		00: 80 MHz crypto clock		
		01: 100 MHz crypto clock		
		10: 120 MHz crypto clock		
		11: Bus clock crypto clock		
17	BR	BIST Result. '1': BIST success. '0': BIST fail.	R/W	0
16	BIST	Crypto engine internal RAM BIST enable. Set '1'	R/W	0
		to enable BIST, when BIST complete, this bit will		
		cleared to '0' and the BR bit indicates the result.		
14-12	DETS	Destination Early DMA Threshold Size.	R/W	111
10-8	DMBS	Destination DMA Maximum Burst Size.	R/W	010
		000: 16 Byte		
		001: 32 Byte		
		010: 64 Byte		
		011: 128 Byte		
		1XX: Reserved.		
2-0	SMBS	Source DMA Maximum Burst Size.	R/W	010
		000: 16 Byte		
		001: 32 Byte		
		010: 64 Byte		
		011: 128 Byte		
		1XX: Reserved.		

14. MIC Calculator

To offload the computation task of CPU, RTL8186 integrates a TKIP-Michael hardware calculator. Register MICLVAL and MICRVAL are used to set the key of TKIP-Michael. After calculated, these two registers will store the output MIC value.

Beside the MIC engine, the calculator also embedded with a PRNG (Pseudo Random Number Generator) to provide uniform distributed random number. To use the PRNG, you may write an initial number into MICPRNR register as a seed number, and then read back the MICPRNR value as the output random number.

Register Summary

Virtual address	Size (byte)	Name	Description	Access
0xBD18_0000	4	MICLVAL	MIC L value register	R/W
0xBD18_0004	4	MICRVAL	MIC R value register	R/W
0xBD18_0008	4	MICSAR	MIC calculation starting address register	R/W
0xBD18_000C	4	MICLENR	MIC calculation length register	R/W
0xBD18_0010	4	MICDMAR	MIC calculation DMA length register	R/W
0xBD18_0014	4	MICCR	MIC control register	R/W
0xBD18_0018	4	MICPRNR	MIC Pseudo Random Number Generator register	R/W

0x	BD1	8_00	000																		MIC L Value Register (MICLVAL)										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

www.DataSheet4U.com Lval

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-0	LVal	MIC L value register. The initial L value is written	R/W	0
		to this register; when calculation done, read this		
		register for new L value.		

 0xBD18_0004
 MIC R Value Register (MICRVAL)

 31
 30
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 RVal

Reset: 0x0000 0000

Bit	Bit Name	Description	R/W	InitVal
31-0	RVal	MIC R value register. The initial R value is written	R/W	0
		to this register; when calculation done, read this		
		register for new R value.		

 0xBD18_0008
 MIC Starting Address Register (MICSAR)

 31
 30
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

SADDR

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-0	SADDR	The physical address of the data that MIC	R/W	0
		calculator is going to do calculation. The address		
		has no alignment restriction.		

 0xBD18_000C
 MIC Calculation Length Register (MICLENR)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

 TLEN

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-0	TLEN	The data length that MIC calculator is going to do	R/W	0
		calculation.		

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-0	DLEN	The DMA length that MIC calculator is going to	R/W	0
		do calculation. The relation between data length (LEN) and DMA length (DLEN) is:		
		DLEN = (TLEN/4 + 2)*4		

0xBD18_0014 MIC Control Register (MICCR)

31	30 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									(Re	serv	red)											I		(]	Rese	erve	ed)		I	R
																						S							Ε	U
																													N	N

Bit	Bit Name	Description	R/W	InitVal
8	IS	Interrupt Status. When MIC calculation is done,	R/W	0
		this bit is set to '1'. Write '1' to clear the status.		
1	IEN	Interrupt Enable. When MIC calculation is done	R/W	0
		and this bit is set to '1', the MIC calculator will		
		assert interrupt to CPU. If this bit is not set, only		
		the IS bit is set while calculation done.		
0	RUN	MIC Calculator run. Write this bit '1' will trigger	R/W	0
		the hardware start calculation. When calculation		
		done, this bit auto reset to '0'.		

0x	0xBD18_0018 MIC PRNG Register (MICPRNR)															RNR)															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														P	RN	G															

Reset: 0x5412_3333

Bit	Bit Name	Description	R/W	InitVal
31-0	PRNG	The Pseudo Random Number Generator. Notice	R/W	0x54123333
		that if write 0 to this register, the PRNG will fail to		
		generate random number.		

15. PCM Controller

The RTL8186 integrates a PCM controller, which supports four channels of voice application and both A-law and u-low compression.

Register Summary

Virtual address	Size (byte)	Name	Description	Access
0xBD28_0000	4	PCMCR	PCM interface Control Register	R/W
0xBD28_0004	4	PCMCHCNR	PCM Channel specific Control Register	R/W
0xBD28_0008	4	PCMTSR	PCM Time Slot Assignment Register	R/W
0xBD28_000C	4	PCMBSIZE	PCM Channels Buffer Size register	R/W
0xBD28_0010	4	CH0TXBSA	PCM Channel 0 TX buffer starting address pointer	R/W
0xBD28_0014	4	CH1TXBSA	PCM Channel 1 TX buffer starting address pointer	R/W
0xBD28_0018	4	CH2TXBSA	PCM Channel 2 TX buffer starting address pointer	R/W
0xBD28_001C	4	CH3TXBSA	PCM Channel 3 TX buffer starting address pointer	R/W
0xBD28_0020	4	CH0RXBSA	PCM Channel 0 RX buffer starting address pointer	R/W
0xBD28_0024	4	CH1RXBSA	PCM Channel 1 RX buffer starting address pointer	R/W
0xBD28_0028	4	CH2RXBSA	PCM Channel 2 RX buffer starting address pointer	R/W
0xBD28_002C	4	CH3RXBSA	PCM Channel 3 RX buffer starting address pointer	R/W
0xBD28_0030	4	PCMIMR	PCM channels Interrupt Mask Register	R/W
0xBD28_0034	4	PCMISR	PCM channels Interrupt Status Register	R/W

0xI	3D2	8_00	000																P	CM	int	erfa	ice (Cor	ıtro	l R	egis	ster	(PC	CMC	CR)
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

www.DataSheet4U.cor	(Reserved)	P	С	P	F	(Reserved)	ICC
		C	K	X	S		
		M	D	D	I		
		E	I	S	N		
			R	Ε	V		

Bit	Bit Name	Description	R/W	InitVal
12	PCME	PCM interface Enable. While PCM interface is	R/W	0
		disabled, all logic and registers will reset to initial		
		state.		
		0: Disable		
		1: Enable		
11	CKDIR	CLK and FS signal source select of PCM	R/W	0
		interface.		
		0: External source from Codec		
		1: From internal PLL (output to Codec)		
10	PXDSE	PCM interface extra data strobe enable.	R/W	0
		0: Disable extra data strobe		
		1: Enable extra data strobe		
9	FSINV	PCM interface frame synchronization polarity	R/W	0
		invert.		
		0: PCMFS set to high active		
		1: PCMFS set to low active		
3-0	ICC	PCM interface channels inter change control.	R/W	0
		When two channels was set as interchange mode,		
		the channel data received from one channel will		
		auto transfer to another for output, without pass		
		through the internal FIFO.		
		0001: Channel 0, 1 talk		
		0010: Channel 0, 2 talk		
		0011: Channel 0, 3 talk		
		0100: Channel 1, 2 talk		
		0101: Channel 1, 3 talk		
		0110: Channel 2, 3 talk		
		1001: Channel 0, 1 talk and channel 2, 3 talk		
		1010: Channel 0, 2 talk and channel 1, 3 talk		
		1011: Channel 0, 3 talk and channel 1, 2 talk		
		others: No interchange talk function enabled.		

0xBD28_0004 PCM Channel Control Register (PCMCHCNR)

3	1 30) 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	F	₹	С	С	С	С	С]	R		С	С	С	С]	R		С	С	C	C]	R		С	C	C	C
	9	S	0	0	Η	Н	Н			S		1	Н	Н	Н			S		2	Η	Н	Н			S		3	Н	Н	Η
	7	/	I	C	0	0	0		,	V		C	1	1	1		,	V		C	2	2	2		7	V		C	3	3	3
	Ι)	L	M	U	T	R]	D		M	U	T	R		I)		M	U	T	R]	D		M	U	T	R
			В	P	Α	Ε	Е					P	Α	Е	Е					P	Α	Е	Е					P	A	E	Ε
			Е	Е								E								Е								E			

Bit	Bit Name	Description	R/W	InitVal
28	C0ILBE	Channel 0 Internal Loop-back Enable. When	R/W	0
		loop-back function enabled, the data in TX FIFO		
		transmits to TXD and also the RX FIFO.		
		0: Disable loop-back		
		1: Enable loop-back		
27	C0CMPE	Channel 0 Compander Enable. When channel	R/W	0
		compander enabled, the 8-bit data from RXD		
		expands to 16 bits and sent to RX FIFO. In the		

w.Dat	aSheet4U.com	other direction, the compander suppresses 16 bit		
		data from TX FIFO to 8 bits and sent to TXD.		
		0: Disable		
26	CHOTIA	1: Enable	D AXA	0
26	CH0UA	Channel 0 u-law/A-law select.	R/W	0
		0: u-law		
		1: A-law		-
25	CH0TE	Channel 0 Transmitter Enable.	R/W	0
		0: Disable		
		1: Enable		
24	CH0RE	Channel 0 Receiver Enable.	R/W	0
		0: Disable		
		1: Enable		
19	C1CMPE	Channel 1 Compander Enable. When channel	R/W	0
		compander enabled, the 8-bit data from RXD		
		expands to 16 bits and sent to RX FIFO. In the		
		other direction, the compander suppresses 16 bit		
		data from TX FIFO to 8 bits and sent to TXD.		
		0: Disable		
		1: Enable		
18	CH1UA	Channel 1 u-law/A-law select.	R/W	0
		0: u-law		
		1: A-law		
17	CH1TE	Channel 1 Transmitter Enable.	R/W	0
		0: Disable		
		1: Enable		
16	CH1RE	Channel 1 Receiver Enable.	R/W	0
10	CITICE	0: Disable	10, 11	O O
		1: Enable		
11	C1CMPE	Channel 1 Compander Enable. When channel	R/W	0
11	CICIVII L	compander enabled, the 8-bit data from RXD	10/ **	O
		expands to 16 bits and sent to RX FIFO. In the		
		other direction, the compander suppresses 16 bit		
		data from TX FIFO to 8 bits and sent to TXD.		
		0: Disable		
		1: Enable		
10	CH2UA	Channel 2 u-law/A-law select.	R/W	0
10	CHZUA	0: u-law	IX/ VV	U
9	CHATE	1: A-law Channel 2 Transmitter Enable.	R/W	0
9	CH2TE	0: Disable	K/W	0
0	CHARE	1: Enable	D/W	0
8	CH2RE	Channel 2 Receiver Enable.	R/W	0
		0: Disable		
	~~~	1: Enable		
3	C3CMPE	Channel 3 Compander Enable. When channel	R/W	0
		compander enabled, the 8-bit data from RXD		
		expands to 16 bits and sent to RX FIFO. In the		
		other direction, the compander suppresses 16 bit		
		data from TX FIFO to 8 bits and sent to TXD.		
		0: Disable		
		1: Enable		
2	CH3UA	Channel 3 u-law/A-law select.	R/W	0
		0: u-law		
		1: A-law		
1	СНЗТЕ	Channel 3 Transmitter Enable.	R/W	0
		0: Disable		
	1	1: Enable	1	



W.DataS CH3REom	Channel 3 Receiver Enable.	R/W	0
	0: Disable		
	1: Enable		

0xBD28_0008 PCM Time Slot Assignment Register (PCMTSR)

-																					~						,	(-			
3	1 3	0 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	₹		CI	HOT	SA			R			CF	H1T	SA			R			CE	[2TS	SA			R			CF	I3T	SA	
	;	S							S								S								S						
	7	V							V								V								V						
	I	)							D								D								D						

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
28-24	CH0TSA	Channel 0 Time Slot Assignment.	R/W	0
		CH0TSA[4:0] mapping to Slot 0 Slot 31.		
20-16	CH1TSA	Channel 1 Time Slot Assignment.	R/W	0
		CH1TSA[4:0] mapping to Slot 0 Slot 31.		
12-8	CH2TSA	Channel 2 Time Slot Assignment.	R/W	0
		CH2TSA[4:0] mapping to Slot 0 Slot 31.		
4-0	CH3TSA	Channel 3 Time Slot Assignment.	R/W	0
		CH3TSA[4:0] mapping to Slot 0 Slot 31.		

0xBD28_001C PCM Buffer Size Register (PCMBSIZE)

31   30   29   28   27   26   25   24   2	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
CH0BSIZE	CH1BSIZE	CH2BSIZE	CH3BSIZE

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-24	CH0BSIZE	Channel 0 buffer size in unit of 4(n+1) bytes.	R/W	0x0
23-16	CH1BSIZE	Channel 1 buffer size in unit of 4(n+1) bytes.	R/W	0x0
15-8	CH2BSIZE	Channel 2 buffer size in unit of 4(n+1) bytes.	R/W	0x0
7-0	CH3BSIZE	Channel 3 buffer size in unit of 4(n+1) bytes.	R/W	0x0

0xBD28_0010 PCM Channel 0 TX Base Address Register (CH0TXBSA)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													TX	BUI	FPR															P	P
																														1	0
																														О	O
																														W	W
																														N	N

Reset: 0x0000 0000

Bit	Bit Name	Description	R/W	InitVal
31-2	TXBUFPR	TX Buffer Pointer. This is a physical address with	R/W	0x0
		word-align limitation.		
1	P1OWN	Page 1 Own bit	R/W	0x0
		0: Page 1 owned by CPU		
		1: Page 1 owned by PCM controller		
0	P0OWN	Page 0 Own bit	R/W	0x0
		0: Page 0 owned by CPU		
		1: Page 0 owned by PCM controller		

 0xBD28_0014
 PCM Channel 1 TX Base Address Register (CH1TXBSA)

 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0



www.DataSheet4U.com	TXBUFPR	P	P
		1	0
		О	О
		W	W
		N	N

Bit	Bit Name	Description	R/W	InitVal
31-2	TXBUFPR	TX Buffer Pointer. This is a physical address with	R/W	0x0
		word-align limitation.		
1	P1OWN	Page 1 Own bit	R/W	0x0
		0: Page 1 owned by CPU		
		1: Page 1 owned by PCM controller		
0	P0OWN	Page 0 Own bit	R/W	0x0
		0: Page 0 owned by CPU		
		1: Page 0 owned by PCM controller		

0xBD28_0018	PCI	M Ch	annel	2 TX	K Bas	se A	ddr	ess I	Regi	ister	· (Cl	H2T	XB	SA)
31   30   29   28   27   26   25   24   23   22   21   20   19   18   17	16 15	14	13   12	11	10	9	8 7	6	5	4	3	2	1	0
TXBU	FPR												P	P
													1	0
													О	O
													W	W
													N	N

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-2	TXBUFPR	TX Buffer Pointer. This is a physical address with	R/W	0x0
		word-align limitation.		
1	P1OWN	Page 1 Own bit	R/W	0x0
		0: Page 1 owned by CPU		
		1: Page 1 owned by PCM controller		
0	P0OWN	Page 0 Own bit	R/W	0x0
		0: Page 0 owned by CPU		
		1: Page 0 owned by PCM controller		

0x	BD	28	3_00	)1C													PCI	и с	han	nel	3 T	X Ba	ise	Ado	dres	s R	egi	ster	(C	H37	CXB	SA)
31	30	0	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														TX	BU	FPR															P	P
																															1	0
																															O	O
																															W	W
																															N	N

Bit	Bit Name	Description	R/W	InitVal
31-2	TXBUFPR	TX Buffer Pointer. This is a physical address with	R/W	0x0
		word-align limitation.		
1	P1OWN	Page 1 Own bit	R/W	0x0
		0: Page 1 owned by CPU		
		1: Page 1 owned by PCM controller		
0	P00WN	Page 0 Own bit	R/W	0x0
		0: Page 0 owned by CPU		
		1: Page 0 owned by PCM controller		

0xBD28_0020	P	PCM Channel 0 RX Base Address Register (CH0RXBSA)
31   30   29   28   27   26   25   24	23   22   21   20   19   18   17   16	5 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



www.DataSheet4U.com	RXBUFPR	PF	
		1 0	)
		0 0	)
		wv	V
		NN	1

Bit	Bit Name	Description	R/W	InitVal
31-2	RXBUFPR	RX Buffer Pointer. This is a physical address with	R/W	0x0
		word-align limitation.		
1	P1OWN	Page 1 Own bit	R/W	0x0
		0: Page 1 owned by CPU		
		1: Page 1 owned by PCM controller		
0	P0OWN	Page 0 Own bit	R/W	0x0
		0: Page 0 owned by CPU		
		1: Page 0 owned by PCM controller		

0x	BD2	28_0	024												J	PCN	1 Cl	anı	nel 1	l RY	K Ba	se A	Add	res	s R	egis	ter	(CI	H1R	XB	SA)
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RX	BU	FPR															P	P
																														1	0
																														О	O
																														W	$\mathbf{W}$
																														N	N

Reset: 0x0000_0000

Bit	Bit Name	Description	R/W	InitVal
31-2	RXBUFPR	RX Buffer Pointer. This is a physical address with	R/W	0x0
		word-align limitation.		
1	P1OWN	Page 1 Own bit	R/W	0x0
		0: Page 1 owned by CPU		
		1: Page 1 owned by PCM controller		
0	P0OWN	Page 0 Own bit	R/W	0x0
		0: Page 0 owned by CPU		
		1: Page 0 owned by PCM controller		

0xBD28_0028 PCM Channel 2 RX Base Address Register (CH2	RXF	BSA)
31   30   29   28   27   26   25   24   23   22   21   20   19   18   17   16   15   14   13   12   11   10   9   8   7   6   5   4   3   2	1	0
RXBUFPR	P	P
	1	0
	О	Ο
	W	$\mathbf{w}$
	N	N

Bit	Bit Name	Description	R/W	InitVal
31-2	RXBUFPR	RX Buffer Pointer. This is a physical address with	R/W	0x0
		word-align limitation.		
1	P1OWN	Page 1 Own bit	R/W	0x0
		0: Page 1 owned by CPU		
		1: Page 1 owned by PCM controller		
0	P0OWN	Page 0 Own bit	R/W	0x0
		0: Page 0 owned by CPU		
		1: Page 0 owned by PCM controller		

0xBD28_002C							ister (CH3RXBSA)
31   30   29   28	27   26   25   24	23 22 21 20 19	18   17   16   1	15   14   13   12	11 10 9 8	7 6 5	4 3 2 1 0



www.DataSheet4U.com	RXBUFPR	P	P	P
		1	1	0
		C	<b>\</b>	O
		W	V	W
		N	1	N

Bit	Bit Name	Description	R/W	InitVal
31-2	RXBUFPR	RX Buffer Pointer. This is a physical address with	R/W	0x0
		word-align limitation.		
1	P1OWN	Page 1 Own bit	R/W	0x0
		0: Page 1 owned by CPU		
		1: Page 1 owned by PCM controller		
0	P0OWN	Page 0 Own bit	R/W	0x0
		0: Page 0 owned by CPU		
		1: Page 0 owned by PCM controller		

0xBD28_0030 PCM Interrupt Mask Register (PCMIMR)

											- 0																				
31	. 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						(	Rese	erve	d)							C	С	C	C	C	C	C	C	C	C	C	C	C	C	C	C
																Η	Η	Η	Η	Η	Н	Η	Н	Η	Η	Η	Η	Η	Н	Η	Η
																0	0	0	0	1	1	1	1	2	2	2	2	3	3	3	3
																P	P	T	R	P	P	T	R	P	P	T	R	P	P	T	R
																0	1	В	В	0	1	В	В	0	1	В	В	0	1	В	В
																O	О	U	U	О	О	U	U	O	О	U	U	O	О	U	U
																K	K	Α	Α	K	K	Α	A	K	K	Α	Α	K	K	Α	Α
																I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	Ι
																Е	Е	Е	Е	Е	Е	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Е	Ε

Bit	Bit Name	Description	R/W	InitVal
15	CH0P0OKIE	Channel 0 Page 0 OK Interrupt Enable.	R/W	0
		0: Disable interrupt		
		1: Enable interrupt		
14	CH0P1OKIE	Channel 0 Page 1 OK Interrupt Enable.	R/W	0
		0: Disable interrupt		
		1: Enable interrupt		
13	CH0TBUAIE	Channel 0 Transmit Buffer Unavailable Interrupt	R/W	0
		Enable.		
		0: Disable interrupt		
		1: Enable interrupt		
12	CH0RBUAIE	Channel 0 Receive Buffer Unavailable Interrupt	R/W	0
		Enable.		
		0: Disable interrupt		
		1: Enable interrupt		
11	CH1P0OKIE	Channel 1 Page 0 OK Interrupt Enable.	R/W	0
		0: Disable interrupt		
		1: Enable interrupt		
10	CH1P1OKIE	Channel 1 Page 1 OK Interrupt Enable.	R/W	0
		0: Disable interrupt		
		1: Enable interrupt		
9	CH1TBUAIE	Channel 1 Transmit Buffer Unavailable Interrupt	R/W	0
		Enable.		
		0: Disable interrupt		
		1: Enable interrupt		
8	CH1RBUAIE	Channel 1 Receive Buffer Unavailable Interrupt	R/W	0
		Enable.		
		0: Disable interrupt		
		1: Enable interrupt		



w <b>7</b> w.Dat	CH2P0OKIE	Channel 2 Page 0 OK Interrupt Enable. 0: Disable interrupt	R/W	0
		1: Enable interrupt		
6	CH2P1OKIE	Channel 2 Page 1 OK Interrupt Enable.	R/W	0
		0: Disable interrupt		
		1: Enable interrupt		
5	CH2TBUAIE	Channel 2 Transmit Buffer Unavailable Interrupt	R/W	0
		Enable.		
		0: Disable interrupt		
		1: Enable interrupt		
4	CH2RBUAIE	Channel 2 Receive Buffer Unavailable Interrupt	R/W	0
		Enable.		
		0: Disable interrupt		
		1: Enable interrupt		
3	CH3P0OKIE	Channel 3 Page 0 OK Interrupt Enable.	R/W	0
		0: Disable interrupt		
		1: Enable interrupt		
2	CH3P1OKIE	Channel 3 Page 1 OK Interrupt Enable.	R/W	0
		0: Disable interrupt		
		1: Enable interrupt		
1	CH3TBUAIE	Channel 3 Transmit Buffer Unavailable Interrupt	R/W	0
		Enable.		
		0: Disable interrupt		
		1: Enable interrupt		
0	CH3RBUAIE	Channel 3 Receive Buffer Unavailable Interrupt	R/W	0
		Enable.		
		0: Disable interrupt		
		1: Enable interrupt		

0x	BD	28_(	0034																P	CM	Int	errı	ıpt	Sta	tus	Reş	giste	er (I	PCN	ИIS	R)
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						(	Rese	erve	d)							С	С	С	С	С	С	С	С	С	С	С	С	С	С	C	С
																Н	Η	Н	Η	Н	Η	Η	Н	Н	Н	Н	Н	Н	Н	Н	Н
																0	0	0	0	1	1	1	1	2	2	2	2	3	3	3	3

(Reso	erveu)			C		C			C	C	C	C	C			
	H	I H	Н	Η	Η	Η	Н	Η	Н	Η	Η	Η	Η	Н	Н	Н
	0	0	0	0	1	1	1	1	2	2	2	2	3	3	3	3
	P	P	T	R	P	P	T	R	P	P	T	R	P	P	T	R
	0	) 1	В	В	0	1	В	В	0	1	В	В	0	1	В	В
	О	0	U	U	О	O	U	U	O	O	U	U	O	O	U	U
	K	K	Α	Α	K	K	A	A	K	K	A	A	K	K	Α	A
	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
D 0 0000 0000		-					•									

Bit	Bit Name	Description	R/W	InitVal
15	CH0P0OKIP	Channel 0 Page 0 OK Interrupt Pending.	R/W	0
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
14	CH0P1OKIP	Channel 0 Page 1 OK Interrupt Pending.	R/W	0
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
13	CH0TBUAIP	Channel 0 Transmit Buffer Unavailable Interrupt	R/W	0
		Pending.		
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
12	CH0RBUAIP	Channel 0 Receive Buffer Unavailable Interrupt	R/W	0
		Pending.		
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
11	CH1P0OKIP	Channel 1 Page 0 OK Interrupt Pending.	R/W	0
		0: No interrupt		



ww.Data	Sneet4U.com	1: Interrupt pending, write '1' to clear.		
10	CH1P1OKIP	Channel 1 Page 1 OK Interrupt Pending.	R/W	0
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
9	CH1TBUAIP	Channel 1 Transmit Buffer Unavailable Interrupt	R/W	0
		Pending.		
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
8	CH1RBUAIP	Channel 1 Receive Buffer Unavailable Interrupt	R/W	0
		Pending.		
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
7	CH2P0OKIP	Channel 2 Page 0 OK Interrupt Pending.	R/W	0
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
6	CH2P1OKIP	Channel 2 Page 1 OK Interrupt Pending.	R/W	0
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
5	CH2TBUAIP	Channel 2 Transmit Buffer Unavailable Interrupt	R/W	0
		Pending.		
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
4	CH2RBUAIP	Channel 2 Receive Buffer Unavailable Interrupt	R/W	0
		Pending.		
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
3	CH3P0OKIP	Channel 3 Page 0 OK Interrupt Pending.	R/W	0
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
2	CH3P1OKIP	Channel 3 Page 1 OK Interrupt Pending.	R/W	0
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
1	CH3TBUAIP	Channel 3 Transmit Buffer Unavailable Interrupt	R/W	0
		Pending.		
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		
0	CH3RBUAIP	Channel 3 Receive Buffer Unavailable Interrupt	R/W	0
		Pending.		
		0: No interrupt		
		1: Interrupt pending, write '1' to clear.		

# 16. 802.11a/b/g WLAN Controller

RTL8186 integrates with a wireless LAN MAC and a direct sequence spread spectrum baseband processor. The WLAN controller implements Direct Sequence Spread Spectrum (DSSS), Complementary Code Keying (CCK) and Orthogonal Frequency Division Multiplexing (OFDM) baseband processing to support all IEEE 802.11a, 802.11b and 802.11g data rates. Differential phase shift keying modulation schemes, DBPSK and DQPSK with data scrambling capability, are available along with complementary code keying to provide data rates of 1, 2, 5.5 and 11Mbps, with long or short preamble. A high speed Fast Fourier Transform (FFT)/Inverse Fast Fourier Transform (IFFT), combined with BPSK, QPSK, 16QAM and 64QAM modulation of the individual subcarriers, provides data rates of 6, 9, 12, 18, 24, 36, 48 and 54Mbps, with rate compatible punctured convolutional coding with a coding rate of 1/2, 2/3 and 3/4.

The WLAN controller also builds in an enhanced signal detector, an adaptive frequency domain equalizer, and a soft-decision Viterbi decoder to alleviate the severe multipath effects. Efficient IQ-imbalance calibration, DC offset, phase noise, frequency offset and timing offset compensation are provided for the radio frequency front-end impairments. Selectable digital transmit and receiver FIR filters are provided to meet the requirement of transmit spectrum mask and to reject the adjacent channel



interference, respectively. Both in the transmitter and receiver, programmable scaling in digital domain trades the quantization noise against the increasing probability of clipping. Furthermore, robust signal detection, symbol boundary detection and channel estimation are performed well at the minimum sensitivity.

Besides, it supports fast receiver Automatic Gain Control (AGC) and antenna diversity functions, and adaptive transmit power control function to obtain better performance in the analog portions of the transceiver. It also has on-chip digital-to-analog converters and analog-to-digital converters for analog I and Q inputs and outputs, transmit TSSI and receiver RSSI input, and transmit and receiver AGC outputs.

To support 802.11h, RTL8186 implements a dynamic frequency selection (DFS) and transmit power control (TPC) that could be used to satisfy regulator requirements for operation in the 5GHz band in Europe.

For security issues, RTL8186 has implemented a high performance security engine to support WEP, TKIP and AES encryption/decryption for transmitting and receiving packet.

The WLAN controller is a DMA bus-master device, and uses descriptor-based buffer structure for packet transmission and reception. These features will definitely offload much CPU loading.

RTL8186 provides interfaces for external RF module. Now Realtek RTL8225 (802.11 b/g) and RFL8255 (802.11 a/b/g) RF chipset are supported.

## **Register Summary**

Virtual Address	Size	Name	Description	RW
	(byte)	WI AN ID	m n · ·	DIV
0xBD40_0000	8	WLAN_ID	ID Register.	RW
			The ID register is only permitted to write via 4-byte access. Read access can be byte, word, or double word	
			access. Read access can be byte, word, or double word	
0xBD40_0008	8	WLAN_MAR	Multicast Register.	RW
		_	The MAR register is only permitted to write via 4-byte	
			access. Read access can be byte, word, or double word	
			access.	
0xBD40_0018	8	WLAN_TSFTR	Timing Synchronization Function Timer Register.	R
0xBD40_0020	4	WLAN_TLPDA	Transmit Low Priority Descriptors Start Address	RW
			(32-bit) (256-byte alignment).	
0xBD40_0024	4	WLAN_TNPDA	Transmit Normal Priority Descriptors Start Address	RW
			(32-bit). (256-byte alignment).	
0xBD40_0028	4	WLAN_THPDA	Transmit High Priority Descriptors Start Address	RW
			(32-bit). (256-byte alignment).	
0xBD40_002C	4	WLAN_BRSR	Basic Rate Set Register.	RW
0xBD40_002E	6	WLAN_BSSID	Basic Service Set ID.	RW
0xBD40_0034	1	WLAN_RR	Response Rate.	RW
0xBD40_0035	1	WLAN_EIFS	Extended InterFrame Space Time. The value is in units	RW
			of 4µs.	
0xBD40_0037	1	WLAN_CR	Command Register.	RW
0xBD40_003C	2	WLAN_IMR	Interrupt Mask Register.	RW
0xBD40_003E	2	WLAN_ISR	Interrupt Status Register.	RW
0xBD40_0040	4	WLAN_TCR	Transmit (Tx) Configuration Register.	RW
0xBD40_0044	4	WLAN_RCR	Receive (Rx) Configuration Register.	RW
0xBD40_0048	4	WLAN_TINT	Timer Interrupt Register.	RW
			Once having written a non-zero value to this register,	
			the Timeout bit of the WLAN_ISR register will be set	
			whenever the least 32 bits of the WLAN_TSFTR	
			reaches this value. The Timeout bit will not be set as	
0.00.10.00.10		WW AN EDD A	long as the WLAN_TINT register is zero.	D.11.1
0xBD40_004C	4	WLAN_TBDA	Transmit Beacon Descriptor start Address (32-bit)	RW
			(256-byte alignment).	



.[Virtualet4U.com Address	Size (byte)	Name	Description	RW
0xBD40_0050	1	WLAN_CR	Command Register.	RW
0xBD40_0051	1	WLAN_CONFIG0	Configuration Register 0.	R
0xBD40_0052	1	WLAN_CONFIG1	Configuration Register 1.	RW
0xBD40_0053	1	WLAN_CONFIG2	Configuration Register 2.	RW
0xBD40_0054	4	WLAN_ANAPARM	Analog Parameter.	RW
0xBD40_0058	1	WLAN_MSR	Media Status Register.	RW
0xBD40 0059	1	WLAN_CONFIG3	Configuration Register 3.	RW
0xBD40 005A	1	WLAN_CONFIG4	Configuration Register 4.	RW
0xBD40_005B	1	WLAN_TESTR	Test mode Register.	RW
0xBD40_0070	2	WLAN_BCNITV	Beacon Interval Register.	RW
0xBD40_0072	2	WLAN_ATIMWND	Atim Window Register.	RW
0xBD40_0074	2	WLAN_BINTRITV	Beacon interrupt Interval Register.	RW
0xBD40_0076	2	WLAN_ATIMTRITV	Atim Interrupt Interval Register.	RW
0xBD40_007C	1	WLAN_PHYADDR	PHY interface Address Register.	RW
0xBD40_007D	1	WLAN PHYDATAW	Write Data to PHY.	W
0xBD40_007E	1	WLAN_PHYDATAR	Read Data from PHY.	R
0xBD40_0080	2	WLAN_RFPINOUT	RF Pins Output	RW
0xBD40_0082	2	WLAN_RFPINEN	RF Pins Enable	RW
0xBD40_0084	2	WLAN_RFPINSEL	RF Pins Select	RW
0xBD40_0086	2	WLAN RFPININPUT	RF Pins Input	RW
0xBD40_0088	4	WLAN_RFPARA	RF Parameter	RW
0xBD40_008C	4	WLAN RFTIMING	RF Timing	RW
0xBD40_009C	1	WLAN_TXAGC	Auto TXAGC Control.	RW
0xBD40_009D	1	WLAN_CCKTXAGC	Complementary Code Keying TX Automatic Gain Control.	RW
0xBD40_009E	1	WLAN_OFDMTXAG C	Orthogonal Frequency Division Multiplexing TX Automatic Gain Control.	RW
0xBD40_009F	1	WLAN_ANTSEL	TX Antenna Select.	RW
0xBD40_00A0	4	WLAN_CAMRW	Content Access Memory Read/Write.	RW
0xBD40_00A4	4	WLAN_CAMOUTPU T	Date written to Content Access Memory.	RW
0xBD40_00A8	4	WLAN_CAMINPUT	Date read from Content Access Memory.	RW
0xBD40_00AC	4	WLAN_CAMDEBUG	Content Access Memory Debug Interface.	RW
0xBD40_00B0	2	WLAN_WPACONFIG	Wi-Fi Protected Access Config.	RW
0xBD40_00B2	2	WLAN_AESMASK	Advanced Encryption Standard Mask.	RW
0xBD40_00B4	1	WLAN_SIFS	Short InterFrame Spacing Timer Setting.	RW
0xBD40_00B5	1	WLAN_DIFS	Distributed InterFrame Spacing Timer Setting.	RW
0xBD40_00B6	1	WLAN_SLOTTIME	Slot Time Setting.	RW
0xBD40_00B7	1	WLAN_USTUNE	Micro-second Fine Tune Config.	RW
0xBD40_00BC	1	WLAN_CWCONFIG	Contention Window Config.	RW
0xBD40_00BD	1	WLAN_CWVALUE	Contention Window Value.	RW
0xBD40_00BE	1	WLAN_RATECTRL	Auto Rate Fallback Control.	RW
0xBD40_00D8	1	WLAN_CONFIG5	Configuration Register 5.	RW
0xBD40_00D9	1	WLAN_TPPOLL	Transmit Priority Polling register.	W
0xBD40_00DC	2	WLAN_CWR	Contention Window Register.	R
0xBD40_00DE	1	WLAN_RETRYCTR	Retry Count Register.	R
0xBD40_00E4	4	WLAN_RDSAR	Receive Descriptor Start Address Register (32-bit). (256-byte alignment).	RW
0xBD40_0100	4	WLAN_DFSCR	DFS control register	RW
0xBD40_0104	4	WLAN_DFSSLR	DFS Schmitt trigger low-threshold setting register	RW
0xBD40_0104 0xBD40_0108	4	WLAN_DFSSHR	DFS Schmitt trigger high-threshold setting register	RW
0xBD40_0108	4	WLAN_DFSDLR	DFS Pulse-duration low-threshold setting register	RW
0xBD40_010C	4	WLAN_DFSDER WLAN_DFSDHR	DFS Pulse-duration low-threshold setting register	RW
0xBD40_0110	4	WLAN_DFSPCR	DFS valid pulse count register	R
0VDD+0_0114	4	W LAM_DISFCK	DIS valid pulse coulit register	71



Virtualet4U.com	Size	Name	Description	RW
Address	(byte)		-	
0xBD40_0118	4	WLAN_DFSTS0R	DFS Time Stamp 0 register	RW
0xBD40_011C	4	WLAN_DFSTS1R	DFS Time Stamp 1 register	RW
0xBD40_0120	4	WLAN_DFSTS2R	DFS Time Stamp 2 register	RW
0xBD40_0124	4	WLAN_DFSTS3R	DFS Time Stamp 3 register	RW
0xBD40_0128	4	WLAN_DFSTS4R	DFS Time Stamp 4 register	RW
0xBD40_012C	4	WLAN_DFSTS5R	DFS Time Stamp 5 register	RW
0xBD40_0130	4	WLAN_DFSTS6R	DFS Time Stamp 6 register	RW
0xBD40_0134	4	WLAN_DFSTS7R	DFS Time Stamp 7 register	RW
0xBD40_0138	4	WLAN_DFSTS8R	DFS Time Stamp 8 register	RW
0xBD40_013C	4	WLAN_DFSTS9R	DFS Time Stamp 9 register	RW
0xBD40_0140	4	WLAN_DFSTSAR	DFS Time Stamp A register	RW
0xBD40_0144	4	WLAN_DFSTSBR	DFS Time Stamp B register	RW
0xBD40_0148	4	WLAN_DFSTSCR	DFS Time Stamp C register	RW
0xBD40_014C	4	WLAN_DFSTSDR	DFS Time Stamp D register	RW
0xBD40_0150	4	WLAN_DFSTSER	DFS Time Stamp E register	RW
0xBD40_0154	4	WLAN_DFSTSFR	DFS Time Stamp F register	RW
0xBD40_0158	4	WLAN_DFSTSGR	DFS Time Stamp G register	RW
0xBD40_015C	4	WLAN_DFSTSHR	DFS Time Stamp H register	RW
0xBD40_0160	4	WLAN_DFSTSIR	DFS Time Stamp I register	RW
0xBD40_0164	4	WLAN_DFSTSJR	DFS Time Stamp J register	RW
0xBD40_0168	4	WLAN_DFSCTSR	DFS Current Time Stamp register	R

0xBD40_0018 TSF Timer Register (WLAN_TSFTR)

Bit	Bit Name	Description	RW
63-0	TSFT	Timing Synchronization Function Timer.	R
		The RTL8186/RTL8186P maintains a TSF timer with modules 2^64 counting in	
		increments of microseconds. The 8 octets are the timestamp field of beacon and probe	
		response frames.	

0xBD40_002C Basic Rate Set Register (WLAN_BRSR)

XDD 40_002			Basic Rate Set Register (WEAR)_BR	.DIV)
Bit	Bit Name	Description	R/V	W
15-12	-	Reserved.		
11-0	BRSR	Basic Rate Set Regis	ster. R/V	W
		1Mbps	Bit 0	
		2Mbps	Bit 1	
		5.5Mbps	Bit 2	
		11Mbps	Bit 3	
		6Mbps	Bit 4	
		9Mbps	Bit 5	
		12Mbps	Bit 6	
		18Mbps	Bit 7	
		24Mbps	Bit 8	
		36Mbps	Bit 9	
		48Mbps	Bit 10	
		54Mbps	Bit 11	

0xBD40_002E Basic Service Set ID Register (WLAN_BSSID)

Bit	Bit Name	Description	RW
47-0	BSSID	Basic Service Set Identification.	RW
		The driver writes to this register to set BSSID after a NIC joins a network or creates a BSS/IBSS network.	



www.DataSheet4U.com

0xBD40_0034 Response Rate (WLAN_RR)

Bit	Bit Name	Description						RW
7-4	MAX_RESPO	Maximum Response	e Rate.					RW
	NSE_RATE	If the rate of the reco	eived unicast pacl	cet/RTS is 1	arger than t	he Maximu	m Response	
		Rate, the hardware u	uses the Maximun	n Response	Rate to resp	pond to the	received pack	et.
3-0	MIN_RESPO	Minimum Response	imum Response Rate.					
	NSE_RATE	If the rate of the reco	eived unicast pack	cet/RTS is r	ot larger th	an the Max	imum Respon	se
		Rate and is not one	of the basic rates	shown belo	w, the hardy	ware uses th	ne Minimum	
		Response Rate to re	spond to the recei	ved packet.				
				Bit 3	Bit 2	Bit 1	Bit 0	
			1Mbps	0	0	0	0	
			2Mbps	0	0	0	1	
			5.5Mbps	0	0	1	0	
			11Mbps	0	0	1	1	
			6Mbps	0	1	0	0	
			9Mbps	0	1	0	1	
			12Mbps	0	1	1	0	
			18Mbps	0	1	1	1	
			24Mbps	1	0	0	0	
			36Mbps	1	0	0	1	
			48Mbps	1	0	1	0	
			54Mbps	1	0	1	1	

0xBD40_0037 Command Register (WLAN_CR)

Bit	Bit Name	Description	RW
7-5		Reserved.	
4	RST	Reset.	RW
		Setting this bit to 1 forces the RTL8186/RTL8186P perform a WLAN MAC reset.	
		During the reset state, it disables the transmitter and receiver and reinitializes the FIFOs.	
		The values of WLAN_IDR and WLAN_MAR are not changed. This bit is 1 during the	
		reset operation, and is cleared to 0 when the reset operation is complete.	
3	RE	Receiver Enable.	RW
		When set to 1 whilst the receive state machine is idle, the receive machine becomes	
		active. This bit will read back as 1 whenever the receive state machine is active. After	
		initial power-up, software must insure that the receiver has completely reset before	
		setting this bit.	
		1: Enable	
		0: Disable	
2	TE	Transmitter Enable.	RW
		When set to 1 whilst the transmit state machine is idle, the transmit state machine	
		becomes active. This bit will read back as 1 whenever the transmit state machine is	
		active. After initial power-up, software must insure that the transmitter has completely	
		reset before setting this bit.	
		1: Enable	
		0: Disable	
1		Reserved.	
0	MULRW	Multiple Bus Read/Write Enable.	RW
		1: Enable	
		0: Disable	

02	0xBD40_003C Interrupt Mask Register (			N_IMR	)
	Bit	Bit Name	Description	RW	l



.D <b>Bit</b> Sh	Bit Name	Description	RW
15	TXFOVW	Tx FIFO Overflow Interrupt.	RW
		1: Enable	
		0: Disable	
14	TimeOut	Time Out interrupt.	RW
		1: Enable	
		0: Disable	
13	BcnInt	Beacon Time out Interrupt.	RW
		1: Enable	
		0: Disable	
12	ATIMInt	ATIM Time Out Interrupt.	RW
		1: Enable	
		0: Disable	
11	TBDER	Tx Beacon Descriptor Error interrupt.	RW
		1: Enable	
		0: Disable	
10	TBDOK	Tx Beacon Descriptor OK interrupt.	RW
		1: Enable	
		0: Disable	
9	THPDER	Tx High Priority Descriptor Error interrupt.	RW
		1: Enable	
		0: Disable	
8	THPDOK	Tx High Priority Descriptor OK interrupt.	RW
		1: Enable	
		0: Disable	
7	TNPDER	Tx Normal Priority Descriptor Error interrupt.	RW
		1: Enable	
		0: Disable	
6	TNPDOK	Tx Normal Priority Descriptor OK interrupt.	RW
		1: Enable	
		0: Disable	
5	RXFOVW	Rx FIFO Overflow interrupt.	RW
		1: Enable	
	DDII	0: Disable	DVV
4	RDU	Rx Descriptor Unavailable interrupt.	RW
		1: Enable	
2	TLPDER	0: Disable	DW
3	ILPDER	Tx Low Priority Descriptor Error interrupt.	RW
		1: Enable	
2	TI DDOV	0: Disable	DW
2	TLPDOK	Tx Low Priority Descriptor OK interrupt.	RW
		1: Enable	
1	RER	0: Disable	RW
1	KEK	Rx Error interrupt. 1: Enable	RW
		0: Disable	
0	DOV.		DW
U	ROK	Rx OK interrupt. 1: Enable	RW
		0: Disable	
	]	U. Disaule	

# $0xBD40_003E$

# Interrupt Status Register (WLAN_ISR)

Bit	Bit Name	Description	RW
15	TXFOVW	Tx FIFO Overflow.	RW
14	TimeOut	Time Out.	RW
		This bit is set to 1 when the least 32 bits of the TSFTR register reaches the value of the	
		TimerInt register.	



w.D <b>Bit</b> Sh	Bit Name	Description	RW
13	BcnInt	Beacon time out Interrupt.	RW
		When set, this bit indicates that the TBTT (Target Beacon Transmission Time) has	
		reached the value set in the Beacon Interrupt Interval Register.	
12	ATIMInt	ATIM Time Out Interrupt.	RW
		When set, this bit indicates that the ATIM window has reached the value set in the Atim	
		Interrupt Interval Register.	
11	TBDER	Transmit Beacon priority Descriptor Error.	RW
		Indicates that a beacon priority descriptor transmission was aborted due to reception of a	
		beacon frame.	
10	TBDOK	Transmit Beacon priority Descriptor OK.	RW
		Indicates that a beacon priority descriptor exchange sequence has been successfully	
		completed.	
9	THPDER	Transmit High Priority Descriptor Error.	RW
		Indicates that a high priority descriptor transmission was aborted due to an SSRC	
		(Station Short Retry Count) having reached SRL (Short Retry Limit), or an SLRC	
		(Station Long Retry Count) having reached LRL (Long Retry Limit).	
8	THPDOK	Transmit High Priority Descriptor OK.	RW
		Indicates that a high priority descriptor exchange sequence has been successfully	
		completed.	
7	TNPDER	Transmit Normal Priority Descriptor Error.	RW
		Indicates that a normal priority descriptor transmission was aborted due to an SSRC	
		(Station Short Retry Count) having reached SRL (Short Retry Limit), or an SLRC	
		(Station Long Retry Count) having reached LRL (Long Retry Limit).	
6	TNPDOK	Transmit Normal Priority Descriptor OK.	RW
		Indicates that a normal priority descriptor exchange sequence has been successfully	
	F011111	completed.	D.Y.Y.
5	FOVW	Rx FIFO Overflow.	RW
		This bit set to 1 is caused by Receive Descriptor Unavailable (RDU), poor PCI	
4	DDII	performance, or overloaded PCI traffic.	DIV
4	_RDU	Rx Descriptor Unavailable.	RW
	TT DDED	When set, this bit indicates that the Rx descriptor is currently unavailable.	DIV
3	TLPDER	Transmit Low Priority Descriptor Error.	RW
		Indicates that a low priority descriptor transmission was aborted due to an SSRC	
		(Station Short Retry Count) having reached SRL (Short Retry Limit), or an SLRC	
2	TLPDOK	(Station Long Retry Count) having reached LRL (Long Retry Limit).	RW
2	ILPDUK	Transmit Low Priority Descriptor OK. Indicates that a low priority descriptor exchange sequence has been successfully	KW
1	RER	completed.  Receive Error.	RW
1	KEK		KW
0	ROK	Indicates that a packet has a CRC32 or ICV error.  Receive OK.	DW
U	KUK		RW
		In normal mode, indicates the successful completion of a packet reception.	

## 0xBD40_0040

# Transmit Configuration Register (WLAN_TCR)

Bit	Bit Name	Description	
31-30		Reserved	
29	NO_PROBE_R SP_TIMESTA MP	Disable tagging a timestamp onto probe response frames.	RW
28		Reserved.	
24	PLCP_LENGT H	HW/SW Physical Layer Convergence Procedure Length Mechanism.  1: Software provides the PLCP length and LENGEXT.	RW
		0: Hardware provides the PLCP length and LENGEXT.	



.D <b>Bit</b> She	Bit Name	Description	RW				
23-21	MXDMA2, 1, 0	Max DMA burst size per Tx DMA burst.	RW				
		This field sets the maximum size of transmit DMA data bursts according to the					
		llowing:					
		000: 16 bytes, 001: 32 bytes, 010: 64 bytes, 011: 128 bytes,					
		100: 256 bytes, 101: 512 bytes, 110: 1024 bytes, 111: 2048 bytes					
20	DISCW	Disable Contention Window Backoff.	RW				
		This bit indicates the existence of a backoff procedure during packet					
		transmission.					
		0: Uses IEEE 802.11 random backoff procedure					
		1: No random backoff procedure					
19	ICV	Append ICV (Integrity Check Value).	RW				
		This bit indicates the existence of an ICV appended at the end of an encipherment					
		packet.					
		0: ICV appended					
		1: No ICV appended					
18-17	LBK1, LBK0	Loopback Test.	RW				
		There are no packets on the TXI+/- and TXQ+/- lines under the Loopback test					
		ndition. The loopback function must be independent of the link state.					
		00: Normal operation, 01: MAC Loopback					
		Baseband Loopback, 11: Continue TX.					
16	CRC	Append CRC32.	RW				
		This bit indicates the existence of a CRC32 appended at the end of a packet.					
		A CRC32 is appended					
		1: No CRC32 appended					
15-8	SRL	Short Retry Limit	RW				
		RTS Retry Limit. Indicates the maximum retry time for frames of length less than					
		or equal to the RTSThreshold.					
7-0	LRL	Long Retry Limit: Data Packet Retry Limit.	RW				
		Indicates the maximum retransmission times for Data or Management frames of					
		length greater than RTSThreshold.					

0xBD40_0044 Receive Configuration Register (WLAN_RCR)

<u> </u>	ADD-10_00-14 Receive configuration Register (WLAI)				
Bit	Bit Name	Description	RW		
31	ONLYERLPKT	Early Receiving based on Packet Size.	RW		
		Early Receiving is only performed for packets with a size greater than 1536 bytes.			
30	ENCS2	Enable Carrier Sense Detection Method 2.	RW		
29	ENCS1	Enable Carrier Sense Detection Method 1.	RW		
28	ENMARP	Enable MAC Auto-reset PHY.	RW		
27-24		Reserved.			
23	CBSSID	Check BSSID 'To DS' and 'From DS' Match Packet.	RW		
		When set to 1, the RTL8186/RTL8186P will check the Rx data type frame's			
		BSSID 'To DS' and 'From DS' fields, according to NETYPE (bits 3:2, MSR), to			
		determine if it is set to Link ok.			
22	APWRMGT	Accept Power Management packet.	RW		
		This bit determines whether the RTL8186/RTL8186P will accept or reject packets			
		with the power management bit set.			
		0: Reject			
		1: Accept			
21	ADD3	Accept Address 3 match packets.	RW		
		Set this bit to 1 to accept broadcast/multicast data type frames that Address 3			
		match the RTL8186/RTL8186P's MAC address. This bit is valid only when			
		NETYPE (bits 3:2, MSR) is set to Link ok in an Infrastructure network.			



.D <b>Bit</b> She	Bit Name	Description	RW
20	AMF	Accept Management Frame.	RW
		This bit determines whether the RTL8186/RTL8186P will accept or reject a	
		management frame.	
		0: Reject	
		1: Accept	
19	ACF	Accept Control Frame.	RW
		This bit determines whether the RTL8186/RTL8186P will accept or reject a	
		control frame.	
		0: Reject	
		1: Accept	
18	ADF	Accept Data Frame.	RW
		This bit determines whether the RTL8186/RTL8186P will accept or reject a data	
		frame.	
		0: Reject	
		1: Accept	
17-16		Reserved.	
15-13	RXFTH2, 1, 0	Rx FIFO Threshold.	
	, , -	This bit specifies the Rx FIFO Threshold level. When the number of the received	
		data bytes from a packet being received into the Rx FIFO of the	
		RTL8186/RTL8186P has reached the set level (or the FIFO contains a complete	
		packet), the receive PCI bus master function will begin to transfer the data from	1
		the FIFO to the host memory. This field sets the threshold level according to the	
		following:	
		000: Reserved, 001: Reserved, 010: 64 bytes, 011: 128 bytes	
		100: 256 bytes, 101: 512 bytes, 110: 1024 bytes,	
		111: No Rx threshold. The RTL8186/RTL8186P begins the transfer of data after	
		receiving a whole packet into the FIFO.	
12	AICV	Accept ICV error packets.	
		This bit determines whether packets with ICV (Integrity Check Value) errors will	
		be accepted or rejected.	
		1: Accept	
		0: Reject	
11		Reserved.	
10-8	MXDMA2, 1, 0	Max. DMA burst size per Rx DMA burst.	
	, ,	This field sets the maximum size of the receive DMA data bursts according to the	
		following:	
		000: 16 bytes, 001: 32 bytes, 010: 64 bytes, 011: 128 bytes	
		100: 256 bytes, 101: 512 bytes, 110: 1024 bytes, 111: Unlimited	1
7-6		Reserved.	
5	ACRC32	Accept CRC32 error packets.	
		This bit determines whether packets with CRC32 errors will be accepted or	1
		rejected.	
		0: Reject	1
		1: Accept	
4		Reserved.	
3	AB	Accept Broadcast packets.	
		This bit determines whether broadcast packets will be accepted or rejected.	1
		0: Reject	
		1: Accept	<u> </u>
2	AM	Accept Multicast packets.	]
		This bit determines whether multicast packets will be accepted or rejected.	1
		0: Reject	1
		1: Accept	
1	APM	Accept Physical Match packets.	
		This bit determines whether physical match packets will be accepted or rejected.	1
	1		1
		0: Reject	



VVV	.D <b>Bit</b> She	Bit Name	Description	RW
	0	AAP	Accept destination Address Packets.	
			This bit determines whether packets with a destination address will be accepted or	
			rejected.	
			0: Reject	
			1: Accept	

0xBD40_0050 Command Register (WLAN_CR)

Bit	Bit Name	Description	RW
7-6	EEM	These 2 bits select the operating mode.	RW
		00: Operating in network/host communication mode.	
		11: Before writing to the WLAN_CONFIGO, 1, 2, and 3 registers, the	
		RTL8186/RTL8186P must be placed in this mode. This prevents accidental changes to	
		the WLAN controller configurations.	
5-0		Reserved.	

0xBD40_0051 Configuration Register 0 (WLAN_CONFIG0)

ADD 40_0051		Comparation register of (VERT)_ee					
Bit	Bit Name	Description	RW				
7-4		Reserved.					
3	Aux_Status	Auxiliary power present Status.	RW				
		This bit indicates the existence of auxiliary power. The value of this bit is fixed after					
		each reset.					
		1: Auxiliary power is present					
		0: Auxiliary power is absent					
2		eserved.					
1-0	GL	Geographic Location.	RW				
		These bits indicate the current operational region in which the RTL8186/RTL8186P					
		nnsmits and receives packets.					
		11: USA, 10: Europe, 0: Japan					

0xBD40_0052 Configuration Register 1 (WLAN_CONFIG1)

Bit	Bit Name	Description					RW
7-6	LED	WLAN LED ind	WLAN LED indicator, which bit values are defined as:				
		LED0-1	00	01	10	11	
		LED0	TX/RX	TX/RX	TX	LINK/ACT	
		LED1	Infrastructure	LINK	RX	Infrastructure	
5-0		Reserved.					

0xBD40_0053 Configuration Register 2 (WLAN_CONFIG2)

Bit	Bit Name	Description	RW
7	LCK	Locked Clocks.	RW
		Set this bit to 1 to lock the transmit frequency and symbol clocks to the same	
		oscillator.	
6	ANT	Antenna diversity.	RW
		0: Disable	
		1: Enable	
5-4		Reserved.	
3	DPS	Descriptor Polling State. Test mode.	RW
		0: Normal working state. This is also the power-on default value	
		1: Test mode	



W	.D <b>Bit</b> Sh	Bit Name	Description	RW
	2	PAPE_sign	Power Amplifier Enable timing.	RW
			1: The RTL8186/RTL8186P will advance PAPE_time to enable the PAPE pin when transmitting data 0: The RTL8186/RTL8186P will delay PAPE_time to enable the PAPE pin when transmitting data	
	1-0	PAPE_time	These two bits indicate that the RTL8186/RTL8186P has enabled the PAPE pin (in µs).	RW

0xBD40_0058 Media Status Register (WLAN_MSR)

Bit	Bit Name	Description			
7-4		Reserved.			
3-2	NETTYPE	Network Type and Link Status.			
		The values of these bits are written by the driver.			
		10: Infrastructure client, 01: Ad-hoc, 11: Access Point, 00: No link			
1-0		Reserved.			

0xBD40_0059 Configuration Register 3 (WLAN_CONFIG3)

Bit	Bit Name	Description	RW
7		Reserved.	
6	PARM_En	Parameter write Enable.	RW
		Setting this bit to 1 and asserting WLAN_CR register bit EEM1 and EEM0 at the same	
		me will enable the WLAN_ANAPARM register to be written via software.	
4-1		Reserved.	
0	FBtBEn	Fast Back to Back Enable.	RW
		0: Disable	
		1: Enable	

0xBD40_005A Configuration Register 4 (WLAN_CONFIG4)

Bit	Bit Name	Description	RW
7	VCOPDN	VCO Power Down.	RW
		0: Normal working state. This is the power-on default value	
		1: VCO power down mode. Setting this bit enables the VCOPDN pin and turns off the	
		external RF front end power (including VCO) and most of the internal power of the	
		RTL8186/RTL8186P	
6	PWROFF	Power Off.	RW
		0: Normal working state. This is the power-on default value	
		1: Power Off mode. Turn off the external RF front end power (excluding VCO) and	
		most of the internal power of the RTL8186/RTL8186P	
5	PWRMGT	Power Management.	RW
		0: Normal working state. This is the power-on default value	
		1: Power management mode. Sets a Tx packet's power management bit to 1 to include a	
		control type frame	
4-0		Reserved.	

0xBD40_0070 Beacon Interval Register (WLAN_BCNITV)

Bit	Bit Name	Description	RW
15-0	BCNITV	Beacon Interval.	RW
		The Beacon Interval represents the number of time units (1 $TU = 1024 \mu s$ ) between	
		target beacon transmissions (TBTTs). This register is written by the driver after starting	
		a BSS/IBSS or joining an IBSS network.	

02	0xBD40_0072 ATIM Window Register (WLAN_AT)			MWND)	
	Bit	Bit Name	Description	RW	



////	.D <b>:Bit</b> She	Bit Name	Description	RW
Ī	15-0	ATIMWND	This register indicates the ATIM Window length in Time Units (TU). It is written by	RW
			the driver after the NIC joins or creates an ad-hoc network.	

0xBD40_0074 Beacon Interrupt Interval Register (WLAN_B
--------------------------------------------------------

Bit	Bit Name	Description	RW
15-0	BINTRITV	This timer register generates BcnInt (bit 13, ISR) at a set time interval before TBTT to	RW
		prompt the host to prepare the beacon. The unit of this register is microseconds. It is	
		written by the driver after the NIC joins a network or creates an ad-hoc network.	

# 0xBD40_0076 ATIM Interrupt Interval Register (WLAN_ATIMTRITV)

Bit	Bit Name	Description	RW
15-0	ATIMTRIT	This timer register generates ATIMInt (bit 12, ISR) at a set time interval before the end	RW
	V	of the ATIM window in an ad-hoc network. The unit of this register is microseconds. It	
		is written by the driver after the NIC joins a network or creates an ad-hoc network.	

0xBD40_0078 PHY Delay Register (WLAN_PHYDELAY)

Bit	Bit Name	Description	RW
7-3		Reserved.	
2-0	PHYDELAY	Physical layer Delay.	RW
		These three bits represent the delay time in µs between the wireless MAC and RF	
		front end when transmitting data.	

0xBD40_00A0 Read/Write CAM (WLAN_CAMRW)

Bit	Bit Name	Description	RW
31	POLLING	Polling bit	RW
30-17		Reserved	
16	WRITE_EN ABLE	Write Enabled	RW
15-7		Reserved	
6-0	CAM_ADD RESS	CAM Address	RW

0xBD40_00AC CAM Debug Interface (WLAN_CAMDEBUG)

Bit	Bit Name	Description	RW
31	SEL_TX_C	Select TX/RX CAM Information	RW
	AM_INFO		
30	KEY_FOUN	TX/RX Security Key is Found.	
	D		
29-24	WPA_CONFI	TX/RX WPA Config	RW
	G		
23-0	CAM_KEY	CAM Key.	RW

0xBD40_00B0 WPA Config (WLAN_WPACONFIG)

Bit	Bit Name	Description	RW
31-9		Reserved.	
8	RX_WPA_D UMMY	Enable RX Dummy Function.	RW
7-4		Reserved.	
3	DISABLE_R X_AES_MI C	Disable RX AES MIC.	RW
2	RX_DECRY PT	Enable RX Decryption.	RW



VVV	.D <b>Bit</b> She	Bit Name	Description	RW
	1	TX_ENCRY	Enable Tx Encryption	RW
		PTION		
	0	USING_DEF	Force HW Using Default Key.	RW
		AULT_KET		

n	хB	40		n	В	$\sim$
П	$\mathbf{v}$	411	•		к	

Bit	Bit Name	Description	RW
7-2		Reserved.	
1	PER_PACKET_	Enable Per-packet Retry Limit.	RW
	RETRY_LIMIT		
0	PER_PACKET_	Enable Per-Packet Contention Window.	RW
	CW		

 $0xBD40_00BD$ 

#### Contention Window Value (WLAN_CWVALUE)

Bit	Bit Name	Description	RW
7-4	CWMAX	Maximum Contention Window. $CWMax = 2^{n}-1$ .	RW
3-0	CWMIN	Minimum Contention Window. $CWMin = 2^{n}-1$ .	RW

0xBD40_00BE

#### Auto Rate Fallback Control (WLAN_RATECTRL)

Bit	Bit Name	Description	RW
7	ENABL_RATE_	Enable Auto Rate Fallback	RW
	FALLBACK		
6-2		Reserved	
1-0	FALLBACK_ST	Auto Rate Fallback Step.	
	EP	Auto rate fallback per 2 ⁿ retry.	

0xBD40_00D8

## **Configuration Register 5 (WLAN_CONFIG5)**

Bit	Bit Name	Description	RW
7	TX_FIFI_OK	Built in Self-Test for TX FIFO.	
		OK	
		0: Fail	
6	RX_FIFO_OK	Built in Self-Test for RX FIFO.	
		: OK	
		0: Fail	
5-0		Reserved.	

0xBD40_00D9

## Transmit Priority Polling Register (WLAN_TPPOLL)

Bit	Bit Name	Description	RW	
7	BQ	Beacon Queue Polling.	W	
		The RTL8186 will clear this bit automatically after a beacon packet has been		
		transmitted or received.		
		Writing to this bit has no effect		
6	HPQ	High Priority Queue Polling.		
		Write a 1 to this bit by software to notify the RTL8186 that there is a high priority		
		packet(s) waiting to be transmitted.		
		The RTL8186 will clear this bit automatically after all high priority packets have		
		peen transmitted.		
		Writing a 0 to this bit has no effect.		



∧. <b>DBit</b> Sh	Bit Name	Description	RW
5	NPQ	Normal Priority Queue Polling.	W
		DPS (bit3, Config 2) set to 0:	
		The RTL8186 will clear this bit automatically after all normal priority packets	
		have been transmitted or received.	
		Writing to this bit has no effect.	
		DPS (bit3, Config 2) set to 1:	
		Write a 1 to this bit via software to notify the RTL8186 that there is a normal	
		priority packet(s) waiting to be transmitted.	
		The RTL8186 will clear this bit automatically after all normal priority packets	
		have been transmitted.	
		Writing a 0 to this bit has no effect.	
4	LPQ	Low Priority Queue Polling.	W
		Write a 1 to this bit via software to notify the RTL8186 that there is a low priority	
		packet(s) waiting to be transmitted.	
		The RTL8186 will clear this bit automatically after all low priority packets have	
		been transmitted.	
	an o	Writing a 0 to this bit has no effect.	
3	SBQ	Stop High Priority Queue.	
		Write a 1 to this bit via software to notify the RTL8186 to stop the DMA	
		mechanism of the High Priority Queue.	
2	SHPQ	Stop High Priority Queue.	
		Write a 1 to this bit via software to notify the RTL8186 to stop the DMA	
	av m o	mechanism of the High Priority Queue.	
1	SNPQ	Stop Normal Priority Queue.	
		Write a 1 to this bit via software to notify the RTL8186 to stop the DMA	
		mechanism of the Normal Priority Queue.	
	CL DO	This bit is invalid when DPS (bit3, Config 2) is set to 1.	
0	SLPQ	Stop Low Priority Queue.	
		Write a 1 to this bit via software to notify the RTL8186 to stop the DMA	
		mechanism of the Low Priority Queue.	

0xBD40_00DC Contention Window Register (WLAN_CWR)

Bit	Bit Name	Description	RW
15-10		Reserved	
9-0	CW	Contention Window.	R
		This register indicates the number of contention windows before transmitting a	
		packet.	

0xBD40_00DE Retry Count Register (WLAN_RETRYCTR)

Bit	Bit Name	Description	RW
7-0	RETRYCT	Retry Count.	R
		This register indicates the number of retry counts when a packet transmit is	
		completed.	

0xBD40_00E4 Receive Descriptor Start Address Register (WLAN_RDSAR)

Bit	Bit Name	Description	
31-0	RDSA	Receive Descriptor Start Address.	
		This is a 32-bit address.	

0xBD40	_0100	DFS Control Register (Di	FSCR)
Bit	Bit Name	Description	R/W



vw.Da <b>t</b> aSh	TSES _{com}	Time Stamp Format select. When this bit is set, the time stamp registers use LSb for	R/W
		recording the CCA status, else the time stamp registers recording the current time	
		while detecting valid pulse.	
		'1': Record CCA status at LSb of time stamp registers	
		'0': Record current time at time stamp registers	
6	CCAEN	CCA filter enable. When this bit is set, the CCA signal will filter the valid pulse	R/W
		during CCA on.	
		'1': Enable CCA filtering	
		'0': Disable CCA filtering	
5	TDS	Time Stamp clock divider select.	R/W
		'1': 5/64 MHz clock selected	
		'0': 5/128 MHz clock selected	
4	TXONE	TX on filter enable. When this bit is set, the DFS detection will stop while TX is on,	R/W
		else disable the TX on filter.	
		'1': Enable TX ON filtering	
		'0': Disable TX ON filtering	
3	IQCKS	I-Q sample clock phase select. When this bit is set, the IQ sample clock use falling	R/W
	IQUILD	edge of the clock, else the IQ sample clock use rising clock edge.	10 11
		'1': falling clock edge	
		'0': rising clock edge	
2	IQEN	I-Q power detection mechanism enable. When this bit set, the DFS module use I-Q	R/W
	IQLIV	power detection mechanism to detect radar pulse, else the DFS module use RSSI	10/ 11
		threshold mechanism.	
		'1': Enable I-Q power detection.	
		'0': Enable RSSI threshold detection.	
1	DCCAEN	Delay CCA mechanism enable. When this bit is set, the Delay CCA signal will mask	R/W
1	DCCAEN		K/W
		the RSSI input. Else the Delay CCA signal has no effect at all.	
		'1': Enable Delay CCA filtering	
	DECENT	'0': Disable Delay CCA filtering.	D ///
0	DFSEN	DFS module enable. When the DFS module is enabled, the Time Stamp registers are	R/W
		updated when valid pulse is detected. When the DFS module is disabled, the Time	
		Stamp registers are reset to default state.	
		'1': Enable DFS function	
		'0': Disable DFS function	

0xBD40_0104

 $DFS\ Schmitt\ trigger\ Low\ Threshold\ Register\ (DFSSLR)$ 

Bit	Bit Name	Description							
31-7		Reserved							
6-0	LT	Low Threshold value of Schmitt trigger	R/W						

 $0\underline{xBD40_0108}$ 

DFS Schmitt trigger High Threshold Register (DFSSHR)

Bit	Bit Name	Description	R/W
31-7		Reserved	
6-0	HT	High Threshold value of Schmitt trigger	R/W

0xBD40 010C

Pulse Duration Low Threshold Register (DFSDLR)

	0200	1 4150 2 41 41 61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~~,
Bit	Bit Name	Description	R/W
31-6		Reserved	
5-0	LT	Low Threshold value of Pulse Duration (unit: 0.2 us)	R/W

 $0xBD40_0110$ 

**Pulse Duration High Threshold Register (DFSDHR)** 



//W/W	_31a6he	et4U.com	Reserved	
	5-0	HT	High Threshold value of Pulse Duration (unit: 0.2 us)	R/W

0xBD40_0114 Pulse Count Register (DFSPCR)

Bit	Bit Name	Description	R/W
31-5		Reserved	
4-0	PC	Valid Pulse Count. While DFS is enabled, the number of valid pulse detected is show at this register. This value also indicates who many time stamp registers are valid. Disable DFS module will reset this register.	R

0xBD40_011CTime Stamp 0 Register (DFSTS0R)0xBD40_0120Time Stamp 1 Register (DFSTS1R)0xBD40_0124Time Stamp 3 Register (DFSTS3R)0xBD40_0128Time Stamp 4 Register (DFSTS4R)0xBD40_012CTime Stamp 5 Register (DFSTS5R)0xBD40_0130Time Stamp 6 Register (DFSTS6R)0xBD40_0134Time Stamp 7 Register (DFSTS7R)0xBD40_0138Time Stamp 8 Register (DFSTS8R)0xBD40_013CTime Stamp 9 Register (DFSTS9R)0xBD40_0140Time Stamp 8 Register (DFSTSAR)0xBD40_0144Time Stamp B Register (DFSTSBR)0xBD40_0145Time Stamp D Register (DFSTSCR)0xBD40_014CTime Stamp D Register (DFSTSDR)0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp G Register (DFSTSER)0xBD40_0155Time Stamp G Register (DFSTSFR)0xBD40_0150Time Stamp H Register (DFSTSFR)0xBD40_0150Time Stamp H Register (DFSTSFR)0xBD40_0150Time Stamp I Register (DFSTSFR)0xBD40_0150Time Stamp I Register (DFSTSIR)0xBD40_0150Time Stamp I Register (DFSTSIR)0xBD40_0150Time Stamp I Register (DFSTSIR)0xBD40_0160Time Stamp I Register (DFSTSIR)		
0xBD40_0120Time Stamp 2 Register (DFSTS2R)0xBD40_0124Time Stamp 3 Register (DFSTS3R)0xBD40_0128Time Stamp 4 Register (DFSTS4R)0xBD40_012CTime Stamp 5 Register (DFSTS5R)0xBD40_0130Time Stamp 6 Register (DFSTS6R)0xBD40_0134Time Stamp 7 Register (DFSTS7R)0xBD40_0138Time Stamp 8 Register (DFSTS8R)0xBD40_013CTime Stamp 9 Register (DFSTS9R)0xBD40_0140Time Stamp A Register (DFSTSAR)0xBD40_0144Time Stamp B Register (DFSTSBR)0xBD40_0148Time Stamp C Register (DFSTSCR)0xBD40_0150Time Stamp D Register (DFSTSDR)0xBD40_0154Time Stamp E Register (DFSTSER)0xBD40_0158Time Stamp F Register (DFSTSFR)0xBD40_0150Time Stamp G Register (DFSTSGR)0xBD40_0150Time Stamp H Register (DFSTSHR)0xBD40_0150Time Stamp H Register (DFSTSHR)0xBD40_0150Time Stamp I Register (DFSTSHR)0xBD40_0150Time Stamp I Register (DFSTSIR)	0xBD40_0118	Time Stamp 0 Register (DFSTS0R)
0xBD40_0124Time Stamp 3 Register (DFSTS3R)0xBD40_0128Time Stamp 4 Register (DFSTS4R)0xBD40_012CTime Stamp 5 Register (DFSTS5R)0xBD40_0130Time Stamp 6 Register (DFSTS6R)0xBD40_0134Time Stamp 7 Register (DFSTS7R)0xBD40_0138Time Stamp 8 Register (DFSTS8R)0xBD40_013CTime Stamp 9 Register (DFSTS9R)0xBD40_0140Time Stamp A Register (DFSTSAR)0xBD40_0144Time Stamp B Register (DFSTSBR)0xBD40_0148Time Stamp C Register (DFSTSCR)0xBD40_014CTime Stamp D Register (DFSTSDR)0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_011C	Time Stamp 1 Register (DFSTS1R)
0xBD40_0128Time Stamp 4 Register (DFSTS4R)0xBD40_012CTime Stamp 5 Register (DFSTS5R)0xBD40_0130Time Stamp 6 Register (DFSTS6R)0xBD40_0134Time Stamp 7 Register (DFSTS7R)0xBD40_0138Time Stamp 8 Register (DFSTS8R)0xBD40_013CTime Stamp 9 Register (DFSTS9R)0xBD40_0140Time Stamp A Register (DFSTSAR)0xBD40_0144Time Stamp B Register (DFSTSBR)0xBD40_0148Time Stamp C Register (DFSTSCR)0xBD40_014CTime Stamp D Register (DFSTSDR)0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_015CTime Stamp H Register (DFSTSIR)	0xBD40_0120	Time Stamp 2 Register (DFSTS2R)
0xBD40_012CTime Stamp 5 Register (DFSTS5R)0xBD40_0130Time Stamp 6 Register (DFSTS6R)0xBD40_0134Time Stamp 7 Register (DFSTS7R)0xBD40_0138Time Stamp 8 Register (DFSTS8R)0xBD40_013CTime Stamp 9 Register (DFSTS9R)0xBD40_0140Time Stamp A Register (DFSTSAR)0xBD40_0144Time Stamp B Register (DFSTSBR)0xBD40_0148Time Stamp C Register (DFSTSCR)0xBD40_014CTime Stamp D Register (DFSTSDR)0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_0124	Time Stamp 3 Register (DFSTS3R)
0xBD40_0130Time Stamp 6 Register (DFSTS6R)0xBD40_0134Time Stamp 7 Register (DFSTS7R)0xBD40_0138Time Stamp 8 Register (DFSTS8R)0xBD40_013CTime Stamp 9 Register (DFSTS9R)0xBD40_0140Time Stamp A Register (DFSTSAR)0xBD40_0144Time Stamp B Register (DFSTSBR)0xBD40_0148Time Stamp C Register (DFSTSCR)0xBD40_014CTime Stamp D Register (DFSTSDR)0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_0128	Time Stamp 4 Register (DFSTS4R)
0xBD40_0134Time Stamp 7 Register (DFSTS7R)0xBD40_0138Time Stamp 8 Register (DFSTS8R)0xBD40_013CTime Stamp 9 Register (DFSTS9R)0xBD40_0140Time Stamp A Register (DFSTSAR)0xBD40_0144Time Stamp B Register (DFSTSBR)0xBD40_0148Time Stamp C Register (DFSTSCR)0xBD40_014CTime Stamp D Register (DFSTSDR)0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_012C	Time Stamp 5 Register (DFSTS5R)
0xBD40_0138Time Stamp 8 Register (DFSTS8R)0xBD40_013CTime Stamp 9 Register (DFSTS9R)0xBD40_0140Time Stamp A Register (DFSTSAR)0xBD40_0144Time Stamp B Register (DFSTSBR)0xBD40_0148Time Stamp C Register (DFSTSCR)0xBD40_014CTime Stamp D Register (DFSTSDR)0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_0130	Time Stamp 6 Register (DFSTS6R)
0xBD40_013CTime Stamp 9 Register (DFSTS9R)0xBD40_0140Time Stamp A Register (DFSTSAR)0xBD40_0144Time Stamp B Register (DFSTSBR)0xBD40_0148Time Stamp C Register (DFSTSCR)0xBD40_014CTime Stamp D Register (DFSTSDR)0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_0134	Time Stamp 7 Register (DFSTS7R)
0xBD40_0140Time Stamp A Register (DFSTSAR)0xBD40_0144Time Stamp B Register (DFSTSBR)0xBD40_0148Time Stamp C Register (DFSTSCR)0xBD40_014CTime Stamp D Register (DFSTSDR)0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_0138	Time Stamp 8 Register (DFSTS8R)
0xBD40_0140Time Stamp A Register (DFSTSAR)0xBD40_0144Time Stamp B Register (DFSTSBR)0xBD40_0148Time Stamp C Register (DFSTSCR)0xBD40_014CTime Stamp D Register (DFSTSDR)0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_013C	Time Stamp 9 Register (DFSTS9R)
0xBD40_0148Time Stamp C Register (DFSTSCR)0xBD40_014CTime Stamp D Register (DFSTSDR)0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_0140	
0xBD40_014CTime Stamp D Register (DFSTSDR)0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_0144	Time Stamp B Register (DFSTSBR)
0xBD40_0150Time Stamp E Register (DFSTSER)0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_0148	Time Stamp C Register (DFSTSCR)
0xBD40_0154Time Stamp F Register (DFSTSFR)0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_014C	Time Stamp D Register (DFSTSDR)
0xBD40_0158Time Stamp G Register DFSTSGR)0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_0150	Time Stamp E Register (DFSTSER)
0xBD40_015CTime Stamp H Register (DFSTSHR)0xBD40_0160Time Stamp I Register (DFSTSIR)	0xBD40_0154	Time Stamp F Register (DFSTSFR)
0xBD40_0160 Time Stamp I Register (DFSTSIR)	0xBD40_0158	Time Stamp G Register DFSTSGR)
	0xBD40_015C	Time Stamp H Register (DFSTSHR)
0xBD40_0164 Time Stamp J Register (DFSTSJR)	0xBD40_0160	Time Stamp I Register (DFSTSIR)
	0xBD40_0164	Time Stamp J Register (DFSTSJR)

Bit	Bit Name	Description	R/W
31-16		Reserved	
15-1	TS	The time stamp of detected valid pulse. This value will reset while DFS module is	R
		disabled.	
0	CCA	When TSFS of DFSCR register is set, this bit is the CCA signal status of the time	R
		that time stamp register is updated. Else this bit indicates the LSb of TS.	

0xBD40_0168 Current Time Stamp Register (DFSCTSR)

Bit	Bit Name	Description	R/W
31-16		Reserved	
15-0		Current real-time stamp. The real-time time stamp will reset to 0 while DFS module is disabled.	R

#### **Packet Buffering**

RTL8186 WLAN controller incorporates two independent FIFOs for transferring data to/from the system interface and from/to the network. The FIFOs, providing temporary storage of data freeing the host system from the real-time demands of the network.

The way in which the FIFOs are emptied and filled is controlled by the FIFO threshold values in the Receive Configuration registers. These values determine how full or empty the FIFOs must be before the device requests the bus. Once RTL8186 requests the bus, it will attempt to empty or fill the FIFOs as allowed by the respective MXDMA settings in the Transmit Configuration and Receive Configuration registers.



www.DataSheet4LLcom

#### **Transmit Buffer Manager**

The buffer management scheme used on the WLAN controller allows quick, simple and efficient use of the frame buffer memory. The buffer management scheme uses separate buffers and descriptors for packet information. This allows effective transfers of data to the transmit buffer manager by simply transferring the descriptor information to the transmit queue. The Tx Buffer Manager DMAs packet data from system memory and places it in the 4KB transmit FIFO, and pulls data from the FIFO to send to the Tx MAC. Multiple packets may be present in the FIFO, allowing packets to be transmitted with short interframe space. Additionally, once RTL8186 requests the bus, it will attempt to fill the FIFO as allowed by the MXDMA setting.

The Tx Buffer Manager process also supports priority queuing of transmit packets. It handles this by drawing from two separate descriptor lists to fill the internal FIFO. If packets are available in the high priority queues, they will be loaded into the FIFO before those of low priority.

#### **Receive Buffer Manager**

The Rx Buffer Manager uses the same buffer management scheme as used for transmits. The Rx Buffer Manager retrieves packet data from the Rx MAC and places it in the 2KB receive data FIFO, and pulls data from the FIFO for DMA to system memory. The receive FIFO is controlled by the FIFO threshold value in RXFTH. This value determines the number of long words written into the FIFO from the MAC unit before a DMA request for system memory occurs. Once the RTL8186 gets the bus, it will continue to transfer the long words from the FIFO until the data in the FIFO is less than one long word, or has reached the end of the packet, or the max DMA burst size is reached, as set in MXDMA.

#### **Transmit & Receive Operation**

The RTL8186 supports descriptor-based buffer management that will significantly lower host CPU utilization. The RTL8186 supports unlimited consecutive transmit descriptors and up to 64 consecutive descriptors for receive. There are four transmission descriptor rings for beacon, high priority packet, normal priority packet and low priority packet respectively. Besides, it includes another descriptor ring for receiving packet. Each transmit descriptor ring may consist of up to infinite 8-double-word consecutive descriptors and the receive descriptor array may consist of up to 64 4-double-word consecutive descriptors. The start address of each descriptor group should be in 256-byte alignment.

#### **Transmit Descriptor**

The following describes what the Tx descriptor may look like, depending on different states in each Tx descriptor.

Tx Descriptor Format (before transmitting, OWN=1, Tx command mode 1)

31	30	29	28	27 26 25 24	23	22 21 20 19	18	17	16	15	14 13 12	11	10	9	8	7	6	5	4	3	2	1	0
O	D	F	L		R		C	M	S	N	RSVD			T	PK	TSI	ZE	(1	2 b	its)			Offset 0
W	M	S	S	TXRATE	T	RTSRATE	T	О	P	O													
N	Α			(4 bits)	S	(4 bits)	S	R	L	_													
=					Е		Е	Е	C	Е													
1	O				N		N	F	P	N													
	K							R		C													
								Α		R													
								G		Y													
										P													
										T													
L																							
E				Lengtl	1 (1	5 bits)				RTSDUR (16 bits)											Offset 4		
N																							
G																							
Е																							
X																							
T					<u> </u>													ļ  .					
					ER_ADDRESS										Offset 8								
RSVD														Fra	me_	_Le	eng	th (	(12)	bit	s)		Offset 12
						NEXT_TX	<u>_</u>	ES	CR	RIP.	TOR_AD	DR	ES	S									Offset 16



at	31 30 29 28 27 2	26 25	24 23	22	21 2	0 19	) 1	8 17	16	15	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	C
CI U	RATE_FALL	R	A		AG	C (8	8 b	its)			RE	TR	Y_:	LIN	ЛΙТ	(8	bits	)	CW	M	ΑX	CV	W١	ΛIN	Offset 20
	BACK_LIMIT	S	N																(4	bit	s)	(4	l b	its)	
	(4 bits)	V	T																						
		D	E																						
		(3	N																						
		bits)	N																						
			A																						
	RSVD														Offset 24										
	RSVD													Offset 28											

Offset#	Bit#	Symbol	Desc	ription					
0	31	OWN	When	ership. n set, this bit indi relative to this de					
			indic	ates that the desc	riptor is own	ned by the ho	st system. Th	he NIC clear	
			bit w	hen the relative l	ouffer data is	transmitted.	In this case,	OWN=1.	
0	30	DMA OK		NOK.					
				y the driver, rese					
				sponding bit is se					
				ssues an interrupt TL8186 just rese					ot,
0	29	FS		Segment Descrip		mout assertin	g an merrup	ι.	
U	2)	15		n set, this bit indi		s is the first d	lescriptor of a	a Tx packet.	and
				his descriptor is p					una
0	28	LS		Segment Descrip		<u>U</u>			
				n set, indicates the		ast descriptor	of a Tx pack	et, and this	
			descr	iptor is pointing t	o the last seg	ment of the p	acket.		
0	27:24	TXRATE	Tx R						
			These	e four bits indicat					
					Bit 27	Bit 26	Bit 25	Bit 24	
				1Mbps	0	0	0	0	
				2Mbps	0	0	0	1	
				5.5Mbps	0	0	1	0	
				11Mbps	0	0	1	1	
				6Mbps 9Mbps	0	1	0	0	
				12Mbps	0	1	1	0	
				18Mbps	0	1	1	1	
				24Mbps	1	0	0	0	
				36Mbps	1	0	0	1	
				48Mbps	1	0	1	0	
				54Mbps	1	0	1	1	
				Reserved		All other co	ombinations		
0	23	RTSEN	DTC	Enable.					•
U	23	KISEN		o 1 indicates that	an RTS/CTS	handshake s	hall be perfor	med at the	
				ning of any fram					ata or
				agement, the fran					
				h of the frame is					
0	22:19	RTSRATE		Rate.	<u> </u>				
				e four bits indicat					tting
			the cu	urrent frame and	will be ignor	ed if the RTS	EN bit is set	to 0.	_
					Bit 22	Bit 21	Bit 20	Bit 19	
				1Mbps	0	0	0	0	
				2Mbps	0	0	0	1	
				5.5Mbps	0	0	1	0	



11Mbps 0 0 1	1
6Mbps 0 1 0	0
9Mbps 0 1 0	1
12Mbps 0 1 1	0
18Mbps 0 1 1	1
24Mbps 1 0 0	0
36Mbps 1 0 0	1
48Mbps	0
Reserved All other combinations	1
0 18 CTSEN CTS Enable.	16
Both RTSEN and CTSEN set to 1 indicates that the CTS-to mechanism will be used.	self protection
0 17 MOREFRAG More Fragment.	
This bit is set to 1 in all data type frames that have another	ragment of the
current packet to follow.	ruginioni or the
0 16 SPLCP Short Physical Layer Convergence Protocol format.	
When set, this bit indicates that a short PLCP preamble will	be added to the
header before transmitting the frame.	
0 15 NO_ENCRYP No Encryption.	
T This packet will be sent out without encryption even if Tx e enabled.	ncryption is
0 14:12 RSVD Reserved.	
0 11:0 TPKTSIZE Transmit Packet Size.	
This field indicates the number of bytes required to transmi	the frame.
4 31 LENGEXT Length Extension.	
This bit is used to supplement the Length field (bits 30:16,	offset 4). This bit
will be ignored if the TXRATE is set to 1Mbps, 2Mbps, or	
4 30:16 Length PLCP Length: The PLCP length field indicates the number	of microseconds
required to transmit the frame.  4 15:0 RTSDUR RTS Duration: These bits indicate the RTS frame's duration	field before
4 15:0 RTSDUR RTS Duration: These bits indicate the RTS frame's duration transmitting the current frame and will be ignored if the RT	
8 31:0 TxBuff 32-bit Transmit Buffer Address.	SELV OIL IS SEL TO 0
12 31:28 RSVD Reserved.	
12 15:12 RSVD Reserved.	
12 11:0 Frame_Length Transmit Frame Length.	
This field indicates the length in the Tx buffer, in bytes, to be	e transmitted.
16 31:0 NTDA 32-bit Address of the Next Transmit Descriptor.	
20 31:28 RATE_FALL Data Rate Auto Fallback Limit.	
BACK_LIMIT	
20 27:25 RSVD Reserved.	
20 24 ANTENNA Tx Antenna.	
20 23:16 AGC Tx AGC.	
20 15:8 RETRY_LIMI Retry Count Limit.	
T 20 7:4 CWMAX Maximum Contention Window.	
20 3:0 CWMIN Minimum Contention Window.	
24 31:0 RSVD Reserved.	
28 31:0 RSVD Reserved.	



## ww.Tx Status Descriptor (after transmitting, OWN=0, Tx status mode)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	1	6	15	14	13	3 1	2	11	10	9	8	7	6		5	4	3	2	-	1	0
O	D	F	L												1	U	T																		Offset 0
W	M	S	S			F	RS	VD	(1	1 b	its	)			]	D	O			R	ΓS	R	C					I	Pac	cket	t R	С			
N	Α														]	R	K			(	7 b	its	)						(8	8 bi	ts)				
=	_																																		
0	O																																		
	K																																		
															F	RSV	VD	)																	Offset 4
												ΤΣ	<u> </u>	BUI	F	ER	_A	DI	ΟR	ES	S														Offset 8
							R	SV	D	(20	bi	ts)												Fra	am	ne_	Ler	ıgt	h (	(12	bit	s)			Offset 12
									N	IΕΣ	T.	_T2	X_	DF	SC	CR	IP.	ГОІ	R _	_A	DD	R	ES	S											Offset 16
	NEXT_TX_ DESCRIPTOR _ADDRESS RSVD												Offset 20																						
	RSVD													Offset 24																					
															F	RSV	VD	1																	Offset 28

Offset#	Bit#	Symbol	Description
0	31	OWN	Ownership. When set, this bit indicates that the descriptor is owned by the NIC. When clear, it indicates that the descriptor is owned by the host system. The NIC clears this bit when the related buffer data has been transmitted. In this case, OWN=0.
0	30	DMA_OK	DMA Okay.
0	29	FS	First Segment Descriptor. When set, this bit indicates that this is the first descriptor of a Tx packet, and that this descriptor is pointing to the first segment of the packet.
0	28	LS	Last Segment Descriptor.  When set, this bit indicates that this is the last descriptor of a Tx packet, and that this descriptor is pointing to the last segment of the packet.
0	27:17	RSVD	Reserved.
0	16	UDR	FIFO under run during transmission of this packet.
0	15	TOK	Transmit (Tx) OK. Indicates that a packet exchange sequence has completed successfully.
0	14:8	RTS RC	RTS Retry Count. The RTS RC's initial value is 0. It indicates the number of retries of RTS.
0	7:0	Packet RC	Packet Retry Count. The RC's initial value is 0. It indicates the number of retries before a packet was transmitted properly.
4	31:0	RSVD	Reserved.
8	31:0	TxBuff	32-bit Transmit Buffer Address.
12	31:12	RSVD	Reserved.
12	11:0	Frame_Length	Transmit Frame Length. This field indicates the length in the Tx buffer, in bytes, to be transmitted.
16	31:0	NTDA	32-bit Address of Next Transmit Descriptor.
20	31:0	RSVD	Reserved.
24	31:0	RSVD	Reserved.
28	31:0	RSVD	Reserved.

## Receive

This section describes what an Rx descriptor could look like, depending on different states in each Rx descriptor. An Rx buffer pointed to by one of the Rx descriptors should be at least 4 bytes.



# WWRx Command Descriptor (OWN=1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	(
O	Е																														Offset 0
W	O							R.	SV	D (	17	bits	s)									Βι	ıffe	r_S	Size	(12	2 bi	its)			
N	R																														
=																															
1																															
RSVD (32 bits)												Offset 4																			
														Offset 8																	
															RS	SVI	)														Offset 12

Offset#	Bit#	Symbol	Description
0	31	OWN	Ownership.
			When set, this bit indicates that the descriptor is owned by the RTL8186, and
			is ready to receive a packet. The OWN bit is set by the driver after having
			pre-allocated a buffer at initialization, or the host has released the buffer to the
			driver. In this case, OWN=1.
0	30	EOR	End of Rx Descriptor Ring.
			This bit set to 1 indicates that this descriptor is the last descriptor of the Rx
			descriptor ring. Once the RTL8186 internal receive descriptor pointer reaches
			here, it will return to the first descriptor of the Rx descriptor ring after this
			descriptor is used by packet reception.
0	29:12	RSVD	Reserved.
0	11:0	Buffer_Size	Buffer Size.
			This field indicates the receive buffer size in bytes.
4	31:0	RSVD	Reserved.
8	31:0	RxBuff	32-bit Receive Buffer Address.
12	31:0	RSVD	Reserved.

# **Rx Status Descriptor (OWN=0)**

12	ν	62	CII	μu	UI	v	* * *	T.A	-v)	,																									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	)	9 8	3	7	6	5	5	4	3	2	1	0	
	O	Е	F	L	D	F	S	R					R	M	P	В	R	P	С	I														Offset	0
7	W	O	S	S	M	О	P	S	R	XF	RΑ	ΤЕ	S	Α	Α	Α	Е	W	R	C			I	rai	ne	L	er	gtl	h (	12	bi	ts)		011501	_
	N	R			Α	V	L	V		(4 ł	oits	s)	V	R	M	R	S	R	С	V						_		_		`		ĺ			
	=				F	F	C	D		`		_	D					M	ı																
	0						P											G	2																
							_											T	-																
-							W	D			A	GС	(8 ł	oits	)	<u> </u>	Α																	Offset	1
	R	S	/D	(61	hits	)	A	E				-	(0 0	,	,		N			F	RSS	I								SC	)			Offset	+
	-		_	(0	010.	,	K	C									Т				bit								(8	3 bi	_	)			
							E	R									Ē			(,	011	,							(,		.00)	,			
							U	Y									N																		
							P	P									N																		
							1	Т									A																		
								E									7																		
								D																											
-								ע								TOI		<u> </u>																_	
	TSFTL														Offset	8																			
															-	TSI	TF	I																Offset	12

Offset#	Bit#	Symbol	Description
---------	------	--------	-------------



Offset#	4∪. <b>Bit#</b>	Symbol	Description					
0	31	OWN	Ownership.					
	31	OWIN	When set, this bit indic	eates that the	descriptor is	owned by th	ne PTI 8186	
			When cleared, it indicates					The
			RTL8186 clears this b					
			or part of a packet. In			tills IXX out	er with a pac	KCt
0	30	EOR	End Of Rx Descriptor		711-0.			
· ·	30	Lon	This bit set to 1 indica		descriptor is t	he last descr	intor of the R	x
			descriptor ring. Once t					
			here, it will return to the					
			descriptor is used by p			ar descriptor	Ting tirer tim	
0	29	FS	First Segment Descrip					
			When set, this bit indic		s is the first d	lescriptor of	a received pa	cket.
			and that this descriptor					,
0	28	LS	Last Segment Descrip				•	
			When set, this bit indic		s is the last d	escriptor of a	received pac	eket,
			and this descriptor is p					ŕ
0	27	DMAF	RX DMA Fail.			-		
			When set, it indicates	this packet is	s wrong in Dl	MA, and it sh	nould be disca	arded
			by driver.	•	C			
0	26	FOVF	FIFO Overflow.					
			When set, this bit indic	cates that the	e receive FIFO	) was exhaus	sted before th	is
			packet was fully receive	ved.				
0	25	SPLCP	Short Physical Layer (	Convergence	Protocol for	mat.		
			When set, this bit indic	cates that a s	hort PLCP pr	eamble was	added to the	
			current received frame		•			
0	24	RSVD	Reserved.					
0	23:20	RXRATE	Rx Rate.					
			These four bits indicat	e the current	frame's rece	iving rate.		
				Bit 23	Bit 22	Bit 21	Bit 20	
			1Mbps	0	0	0	0	
			2Mbps	0	0	0	1	
			5.5Mbps	0	0	1	0	
			11Mbps	0	0	1	1	
			6Mbps	0	1	0	0	
			9Mbps	0	1	0	1	
			12Mbps	0	1	1	0	
			18Mbps	0	1	1	1	
			24Mbps	1	0	0	0	
			36Mbps	1	0	0	1	
			48Mbps	1	0	1	0	
			54Mbps	1	0	1	1	
1			Reserved	-	All other co	ombinations		
0	19	RSVD	Reserved.					
0	18	MAR	Multicast Address Pac	ket Received	d.			
			When set, this bit indic			et was recei	ved.	
0	17	PAM	Physical Address Mate		paci			
			When set, this bit indic		e destination a	address of thi	is Rx packet	
1			matches the value in the				Facility	
0	16	BAR	Broadcast Address Re					
			When set, this bit indic		roadcast pacl	ket was recei	ved. BAR an	d
			MAR will not be set si					
0	15	RES	Receive Error.		<i>y</i> .			
		1110	Valid if DMAF=0					
0	14	PWRMGT	Receive Power Manag	ement Packe	et.			
		1111.101	When set, this bit indic			agement hit i	s set on the	
			received packet.	mai inc	0 <b></b> 1,1 <b></b>			
	1		1					



Offset#	4∪. <b>Bit#</b>	Symbol	Description
0	13	CRC32	CRC32 Error.
			When set, this bit indicates that a CRC32 error has occurred on the received
			packet. A CRC32 packet can be received only when RCR_ACRC32 is set.
0	12	ICV	Integrity Check Value Error.
			When set, this bit indicates that an ICV error has occurred on the received
			packet. A ICV packet can be received only when RCR_AICV is set.
0	11:0	Frame_Length	When OWN=0 and LS =1, this bit indicates the received packet length
			including CRC32, in bytes.
4	31:27	RSVD	Reserved.
4	26	WAKEUP	The received packet is a unicast wakeup packet.
4	25	DECRYPTED	The received packet has been decrypted.
4	24	ANTENNA	The received packet is received through this antenna.
4	23:16	AGC	The AGC of the received packet.
4	15:8	RSSI	Received Signal Strength Indicator.
			The RSSI is a measure of the RF energy received by the PHY.
4	7:0	SQ	Signal Quality.
			The SQ is a measure of the quality of BAKER code lock, providing an
			effective measure during the full reception of a PLCP preamble and header.
8	31:0	TSFTL	A snapshot of the TSFTR's least significant 32 bits. Valid only when LS is set.
12	31:0	TSFTH	A snapshot of the TSFTR's most significant 32 bits. Valid only when LS is set.

## 17. Characteristics

# 18. Design and Layout Guide

In order to achieve maximum performance using the RTL8186/RTL8186P, good design attention is required throughout the design and layout process. The following are some recommendations on how to implement a high performance system.

#### **General Guidelines**

- Provide a good power source, minimizing noise from switching power supply circuits (<50mV).
- Keep power and ground noise levels below 50mV.
- Use bulk capacitors  $(4.7\mu\text{F}-10\mu\text{F})$  between the power and ground planes.
- I Use 0.1μF de-coupling capacitors to reduce high-frequency noise on the power and ground planes.
- Keep de-coupling capacitors as close as possible to the RTL8186/RTL8186P chip.

#### **Differential Signal Layout Guidelines**

- I Keep differential pairs as close as possible and route both traces as identically as possible.
- I Avoid vias and layer changes if possible.
- I Keep transmit and receive pairs away from each other. Run orthogonally or separate by a ground plane.

#### **Clock Circuit**

- I If possible, surround the clock by ground trace to minimize high-frequency emissions.
- I Keep the crystal or oscillator as close to the RTL8186/RTL8186P as possible.

#### **Power Plane**

- Divide the power plane into 1.8V digital, 3.3V analog, and 3.3V digital.
- Use 0.1μF decoupling capacitors and bulk capacitors between each power plane and the ground plane.

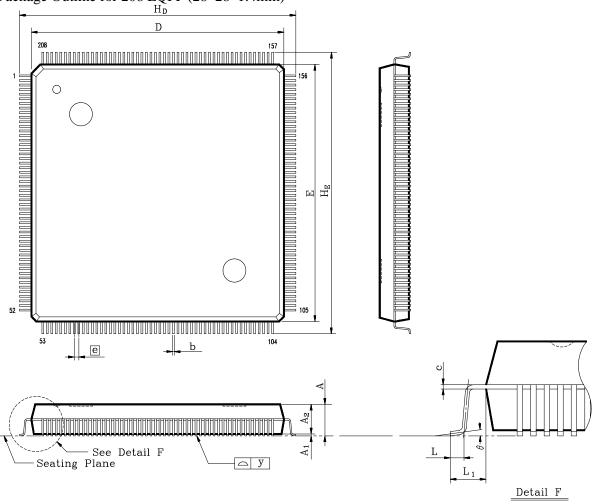
#### **Ground Plane**

Keep the system ground region as one continuous, unbroken plane that extends from the primary side of the transformer to the rest of the board.



Place a moat (gap) between the system ground and chassis ground.

#### RF Interface


As the RF interface is complex and power noise sensitive, we strongly recommend customers to hard copy the RF design from Realtek.

#### **Memory Interface**

- Keep the SDRAM as close as possible to the RTL8186/RTL8186P. The FLASH timing is slower than SDRAM so place the SDRAM closer than FLASH if space considerations prevent placing both components equally close to the RTL8186/RTL8186P.
- I Where two banks of SDRAM are used, the memory clock trace should have the same length.

# 18. Mechanical Dimensions

Package Outline for 208 LQFP (28*28*1.4mm)

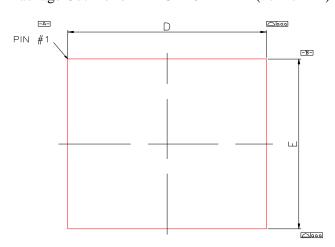


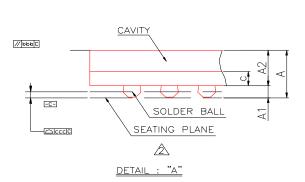
## Notes for 208 LQFP

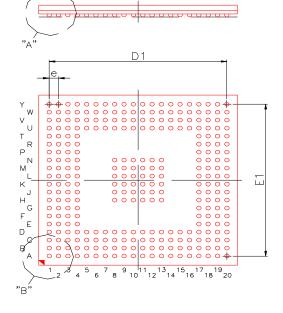
Symbol	Dimens	sion in	inch	Dime	nsion	in mm
	Min	Тур	Max	Min	Тур	Max
Α	0.136	0.144	0.152	3.45	3.65	3.85
A1	0.004	0.010	0.036	0.10	0.25	0.91

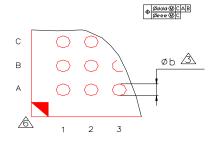
Notes:

- 1.Dimension D & E do not include interlead flash.
- 2.Dimension b does not include dambar protrusion/intrusion.





ww. <b>A2</b> taSh	ie <b>0:</b> 419cc	0.128	0.136	3.02	3.24	3.46
b	0.004	0.008	0.012	0.10	0.20	0.30
С	0.002	0.006	0.010	0.04	0.15	0.26
D	1.093	1.102	1.112	27.75	28.00	28.25
Е	1.093	1.102	1.112	27.75	28.00	28.25
e	0.012	0.020	0.031	0.30	0.50	0.80
HD	1.169	1.205	1.240	29.70	30.60	31.50
HE	1.169	1.205	1.240	29.70	30.60	31.50
L	0.010	0.020	0.030	0.25	0.50	0.75
L1	0.041	0.051	0.061	1.05	1.30	1.55
у	-	-	0.004	-	-	0.10
θ	0°	-	12°	0°	-	12°


- 3. Controlling dimension: Millimeter
- 4.General appearance spec. should be based on final visual inspection spec.


on mai visual inspection spec.							
TITLE: 208L QFP (28x28 mm*2) FOOTPRINT 2.6mm							
PACKAGE OUTLINE DRAWING							
LEADFRAME MATERIAL:							
APPROVE		DOC. NO.					
		VERSION					
		PAGE					
CHECK		DWG NO.					
		DATE					
REALTEK SEMICONDUCTOR CORP.							

# Package Outline for TFBGA 292 BALL (17*17 mm)









DETAIL : "B"

Notes for TFBGA 292 BALL



www.DataSheet4U.com

Symbol	Dimension in mm			Dimension in inch			
	Min	Nom	Max	Min	Nom	Max	
A			1.30			0.051	
A1	0.25	0.30	0.35	0.010	0.012	0.014	
A2	0.84	0.89	0.94	0.033	0.035	0.037	
С	0.32	0.36	0.40	013	0.014	0.016	
D	16.90	17.00	17.10	0.665	0.669	0.673	
Е	16.90	17.00	17.10	0.665	0.669	0.673	
D1		15.20			0.598		
E1		15.20			0.598		
е		0.80			0.031		
b	0.35	0.40	0.45	0.014	0.016	0.018	
aaa		0.10			0.004		
bbb	0.10 0.12 0.15 0.08			0.004			
CCC				0.005			
ddd				0.006			
eee				0.003			
MD/ME	20/20			20/20			

#### Notes:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- 3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
- 4. THERE SHALL BE A MINIMUM CLEARANCE OF 0.25mm BETWEEN THE EDGE OF THE SOLDER BALL AND THE BODY EDGE.
- 5. REFERENCE DOCUMENT: JEDEC MO-205.
- 6. THE PATTERN OF PIN 1 FIDUCIAL IS FOR REFERENCE ONLY.

TITLE : 292LD TFBGA ( 17x17mm) PACKA	AGE OUTLINE					
SUBSTRATE MATERIAL: BT RESIN						
APPR.	DWG NO.					
ENG.	Rev NO					
QM.	PRODUCT CODE					
CHK.	DAT					
DWG.	SHTI					
REALTEK SEMICONDUCTOR CORP.						

# Realtek Semiconductor Corp. Headquarters

No. 2, Industry East Road IX, Science-based Industrial Park, Hsinchu, 300, Taiwan, R.O.C. Tel: 886-3-5780211 Fax: 886-3-5776047

www.realtek.com.tw